Three-dimensional extensions of the Alday–Gaiotto–Tachikawa relation
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 1, pp. 73-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An extension of the two-dimensional (2d) Alday–Gaiotto–Tachikawa (AGT) relation to three dimensions starts from relating the theory on the domain wall between some two $S$-dual supersymmetric Yang–Mills (SYM) models to the 3d Chern–Simons (CS) theory. The simplest case of such a relation would presumably connect traces of the modular kernels in 2d conformal theory with knot invariants. Indeed, the two quantities are very similar, especially if represented as integrals of quantum dilogarithms. But there are also various differences, especially in the “conservation laws” for the integration variables holding for the monodromy traces but not for the knot invariants. We also consider another possibility: interpreting knot invariants as solutions of the Baxter equations for the relativistic Toda system. This implies another AGT-like relation: between the 3d CS theory and the Nekrasov–Shatashvili limit of the 5d SYM theory.
Keywords: Alday–Gaiotto–Tachikawa relation, Chern–Simons theory, knot invariant.
@article{TMF_2012_172_1_a5,
     author = {D. V. Galakhov and A. D. Mironov and A. Yu. Morozov and A. V. Smirnov},
     title = {Three-dimensional extensions of {the~Alday{\textendash}Gaiotto{\textendash}Tachikawa} relation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {73--99},
     year = {2012},
     volume = {172},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a5/}
}
TY  - JOUR
AU  - D. V. Galakhov
AU  - A. D. Mironov
AU  - A. Yu. Morozov
AU  - A. V. Smirnov
TI  - Three-dimensional extensions of the Alday–Gaiotto–Tachikawa relation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 73
EP  - 99
VL  - 172
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a5/
LA  - ru
ID  - TMF_2012_172_1_a5
ER  - 
%0 Journal Article
%A D. V. Galakhov
%A A. D. Mironov
%A A. Yu. Morozov
%A A. V. Smirnov
%T Three-dimensional extensions of the Alday–Gaiotto–Tachikawa relation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 73-99
%V 172
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a5/
%G ru
%F TMF_2012_172_1_a5
D. V. Galakhov; A. D. Mironov; A. Yu. Morozov; A. V. Smirnov. Three-dimensional extensions of the Alday–Gaiotto–Tachikawa relation. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 1, pp. 73-99. http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a5/

[1] Yu. Terashima, M. Yamazaki, JHEP, 08 (2011), 135, arXiv: 1103.5748 | DOI

[2] D. Gaiotto, $N=2$ dualities, arXiv: 0904.2715 | MR

[3] D. Gaiotto, G. Moore, A. Neitzke, Wall-crossing, Hitchin systems, and the WKB approximation, arXiv: ; T. Dimofte, S. Gukov, Y. Soibelman, Lett. Math. Phys., 95:1 (2011), 1–25, arXiv: ; M. Kontsevich, Y. Soibelman, Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, arXiv: ; V. Fock, A. Goncharov, Publ. Math. Inst. Hautes Études Sci., 103 (2006), 1–211, arXiv: 0907.39870912.13460811.2435math/0311149 | MR | DOI | MR | Zbl | MR | DOI | MR | Zbl

[4] V. Pestun, Localization of the four-dimensional $N=4$ SYM to a two-sphere and 1/8 BPS Wilson loops, arXiv: 0906.0638 | MR

[5] N. Nekrasov, E. Witten, JHEP, 09 (2010), 092, 82 pp., arXiv: 1002.0888 | DOI | MR

[6] H. Awata, H. Kanno, J. Phys. A, 44:37 (2011), 375201, 21 pp., arXiv: 0910.0083 | DOI | MR | Zbl

[7] E. Gorsky, $q,t$-Catalan numbers and knot homology, arXiv: 1003.0916 | MR

[8] T. Dimofte, S. Gukov, L. Hollands, Vortex counting and Lagrangian 3-manifolds, arXiv: 1006.0977 | MR

[9] R. Dijkgraaf, H. Fuji, M. Manabe, Nucl. Phys. B, 849:1 (2011), 166–211, arXiv: 1010.4542 | DOI | MR | Zbl

[10] K. Hosomichi, S. Lee, J. Park, JHEP, 12 (2010), 079, arXiv: ; 03 (2011), 127, arXiv: ; SUSY gauge theories on squashed three-spheres, arXiv: 1009.03401012.35121102.4716 | DOI | Zbl | DOI | MR

[11] E. Witten, Analytic continuation of Chern–Simons theory, arXiv: 1001.2933 | MR

[12] F. A. H. Dolan, V. P. Spiridonov, G. S. Vartanov, Phys. Lett. B, 704 (2011), 234–241, arXiv: 1104.1787 | DOI | MR

[13] L. Alday, D. Gaiotto, Y. Tachikawa, Lett. Math. Phys., 91:2 (2010), 167–197, arXiv: ; N. Wyllard, JHEP, 11 (2009), 002, 22 pp., arXiv: ; A. Mironov, A. Morozov, Phys. Lett. B, 680:2 (2009), 188–194, arXiv: ; Nucl. Phys. B, 825:1–2 (2009), 1–37, arXiv: 0906.32190907.21890908.21900908.2569 | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI

[14] K. Hikami, Internat. J. Modern Phys. A, 16:19 (2001), 3309–3333, arXiv: ; Internat. J. Modern Phys. B, 16:14–15 (2002), 1963–1970 ; J. Geom. Phys., 57:9 (2007), 1895–1940, arXiv: ; T. Dimofte, S. Gukov, J. Lenells, D. Zagier, Commun. Num. Theor. Phys., 3:2 (2009), 363–443, arXiv: math-ph/0105039math/06040940903.2472 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[15] R. Poghossian, JHEP, 12 (2009), 038, 14 pp., arXiv: 0909.3412 | DOI | MR

[16] J. Teschner, Internat. J. Modern Phys. A, 19:suppl.2 (2004), 436–458, arXiv: ; “From Liouville theory to the quantum geometry of Riemann surfaces”, Prospects in Mathematical Physics, Young Researchers Symposium of the 14th International Congress on Mathematical Physics (Lisbon, Portugal, July 28 – August 2, 2003), Contemporary Mathematics, 437, eds. J. C. Mouräo, J. P. Nunes, AMS, Providence, RI, 2007, 231–246, arXiv: hep-th/0303150hep-th/0308031 | DOI | MR | Zbl | DOI | MR | Zbl

[17] E. W. Barnes, Proc. London Math. Soc., 31:1 (1899), 358–381 ; Phil. Trans. Roy. Soc. A, 196 (1901), 265–387 ; Trans. Cambr. Phil. Soc., 19 (1904), 374–425 | DOI | Zbl | DOI | Zbl | Zbl

[18] T. Shintani, J. Fac. Sci. Univ. Tokyo. Sect. IA Math., 24:1 (1977), 167–199 ; N. Kurokawa, Proc. Japan Acad. Ser. A, 67:3 (1991), 61–64 ; 68:9 (1992), 256–260 ; N. Kurokawa (ed.) et al., “Multiple zeta functions: an example”, Zeta Functions in Geometry, Advanced Studies in Pure Mathematics, 21, Kinokuniya Company, Tokyo, 1992, 219–226 ; L. D. Faddeev, R. M. Kashaev, Modern Phys. Lett. A, 9:5 (1994), 427–434, arXiv: ; L. Faddeev, Lett. Math. Phys., 34:3 (1995), 249–254, arXiv: ; “Modular double of a quantum group”, Conférence Moshé Flato “Quantization, Deformations, and Symmetries” (Dijon, France, September 5–8, 1999), Mathematical Physics Studies, 1, eds. G. Dito, D. Sternheimer, Kluwer, Dordrecht, 2000, 149–156, arXiv: ; S. Sergeev, V. Bazhanov, H. Boos, V. Mangazeev, Yu. Stroganov, Quantum dilogarithm and tetrahedron equation, Preprint IHEP-95-129, 1995 ; M. Jimbo, T. Miwa, J. Phys. A, 29:12 (1996), 2923–2958, arXiv: ; S. N. M. Ruijsenaars, J. Math. Phys., 38:2 (1997), 1069–1146 ; R. M. Kashaev, Lett. Math. Phys., 43:2 (1998), 105—115 hep-th/9310070hep-th/9504111math.qa/9912078hep-th/9601135 | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[19] E. Witten, Commun. Math. Phys., 121:3 (1989), 351–399 | DOI | MR | Zbl

[20] J. Wess, B. Zumino, Phys. Lett. B, 37:1 (1971), 95–07 ; С. П. Новиков, УМН, 37:5(227) (1982), 3–49 ; E. Witten, Commun. Math. Phys., 92:4 (1984), 455–472 ; A. Gerasimov, A. Marshakov, A. Morozov, M. Olshanetsky, S. Shatashvili, Internat. J. Modern Phys. A, 5 (1990), 2495–2589 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[21] A. Yu. Morozov, UFN, 162:8 (1992), 83–175 ; 164:1 (1994), 3–62, arXiv: ; Matrix models as integrable systems, arXiv: ; Challenges of matrix models, arXiv: ; A. Mironov, Internat. J. Modern Phys. A, 9:25 (1994), 4355–4405, arXiv: ; А. Д. Миронов, ЭЧАЯ, 33:5 (2002), 1051–1145; A. Mironov, Quantum deformations of $\tau$-functions, bilinear identities and representation theory, arXiv: ; ТМФ, 114:2 (1998), 163–232 ; $\tau$-Function within group theory approach and its quantization, arXiv: hep-th/9303139hep-th/9502091hep-th/0502010hep-th/9312212hep-th/9409190q-alg/9711006 | DOI | DOI | DOI | MR | Zbl | MR | DOI | MR | Zbl

[22] M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño, C. Vafa, Commun. Math. Phys., 261:2 (2006), 451–516, arXiv: ; M. Mariño, Rev. Modern Phys., 77:2 (2005), 675–720, arXiv: ; V. Bouchard, B. Florea, M. Mariño, Counting higher genus curves with crosscaps in Calabi–Yau orientifolds, arXiv: hep-th/0312085hep-th/0406005hep-th/0405083 | DOI | MR | Zbl | DOI | MR | Zbl | MR

[23] S. Garoufalidis, T. T. Q Lê, Geom. Topol., 9 (2005), 1253–1293, arXiv: math/0309214 | DOI | MR | Zbl

[24] A. Alexandrov, A. Mironov, A. Morozov, Internat. J. Modern Phys. A, 19:24 (2004), 4127–4163, arXiv: ; Physica D, 235:1–2 (2007), 126–167, arXiv: ; JHEP, 12 (2009), 053, 51 pp., arXiv: ; А. С. Александров, А. Д. Миронов, А. Ю. Морозов, ТМФ, 150:2 (2007), 179–192 ; A. Alexandrov, A. Mironov, A. Morozov, P. Putrov, Internat. J. Modern Phys. A, 24:27 (2009), 4939–4998, arXiv: ; B. Eynard, JHEP, 11 (2004), 031, 35 pp., arXiv: ; L. Chekhov, B. Eynard, JHEP, 03 (2006), 014, 18 pp., arXiv: ; 12 (2006), 026, 29 pp., arXiv: ; N. Orantin, Symplectic invariants, Virasoro constraints and Givental decomposition, arXiv: hep-th/0310113hep-th/06082280906.33050811.2825hep-th/0407261hep-th/0504116math-ph/06040140808.0635 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl

[25] N. M. Dunfield, S. Gukov, J. Rasmussen, Exp. Math., 15:2 (2006), 129–159, arXiv: math/0505662 | DOI | MR | Zbl

[26] S. Gukov, A. Iqbal, C. Kozcaz, C. Vafa, Link homologies and the refined topological vertex, arXiv: 0705.1368 | MR

[27] M. Khovanov, Duke Math. J., 101:3 (2000), 359–426 | DOI | MR | Zbl

[28] E. Guadagnini, M. Martellini, M. Mintchev, “Chern–Simons field theory and quantum groups”, Proceedings of the Workshop on Quantum Groups (Clausthal, 1989), Lecture Notes in Physics, 370, Springer, Berlin, 1990, 307–317 | DOI | MR

[29] A. Morozov, A. Smirnov, Nucl. Phys. B, 835:3 (2010), 284–313, arXiv: ; A. Smirnov, Notes on Chern–Simons theory in the temporal gauge, arXiv: 1001.20030910.5011 | DOI | MR | Zbl

[30] V. Drinfel'd, “Quasi Hopf algebras and Knizhnik–Zamolodchikov equations”, Problems of Modern Quantum Field Theory (Alushta, 1989), Research Reports in Physics, eds. A. A. Belavin, A. U. Klimyk, A. B. Zamolodchikov, Springer, Berlin, 1989, 1–13 | DOI | MR

[31] T. T. Q. Le, J. Murakami, Nagoya Math. J., 142 (1996), 39–65 | DOI | MR | Zbl

[32] S. Chmutov, S. Duzhin, Acta Appl. Math., 66:2 (2001), 155–190, arXiv: math/0501040 | DOI | MR | Zbl

[33] V. G. Knizhnik, A. B. Zamolodchikov, Nucl. Phys. B, 247:1 (1984), 83–103 | DOI | MR | Zbl

[34] P. Dunin-Barkovsky, A. Sleptsov, A. Smirnov, Kontsevich integral for knots and Vassiliev invariants, arXiv: 1112.5406 | MR

[35] S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev knot invariants, arXiv: ; J. M. F. Labastida, E. Perez, J. Math. Phys., 41:5 (2000), 2658–2699, arXiv: ; J. Math. Phys., 39:10 (1998), 5183–5198, arXiv: ; M. Alvarez, J. M. F. Labastida, E. Pérez, Nucl. Phys. B, 488:3 (1997), 677–718, arXiv: ; M. Alvarez, J. M. F. Labastida, Commun. Math. Phys., 189:3 (1997), 641–654, arXiv: ; Nucl. Phys. B, 433:3 (1995), 555–596, arXiv: 1103.5628hep-th/9807155hep-th/9710176hep-th/9607030q-alg/9604010hep-th/9407076 | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[36] D. Bar-Natan, E. Witten, Commun. Math. Phys., 141:2 (1991), 423–440 ; D. Bar-Natan, Perturbative aspects of the Chern–Simons topological quantum field theory, Ph. D. Thesis, Princeton Univ. Press, Princeton, NJ, 1991 ; J. Knot Theor. Ramifications, 4:4 (1995), 503–547 ; Wheels, wheeling, and the Kontsevich integral of the unknot, arXiv: ; R. Kashaev, N.Reshetikhin, Invariants of tangles with flat connections in their complements. I. Invariants and holonomy $R$-matrices, arXiv: ; II. Holonomy $R$-matrices related to quantized universal enveloping algebras at roots of 1, arXiv: ; V. G. Turaev, O. Y. Viro, Topology, 31:4 (1992), 865–902 ; T. +. Tãàрхт, L{ØE}=, 41:1(247) (1986), 97–147 ; S. Axelrod, I. Singer, “Chern–Simons Perturbation Theory”, Proceedings of the 20th International Conference on Differential Geometric Methods in Theoretical Physics (New York, USA, June 3–7, 1991), v. 1, 2, eds. S. Catto, A. Rocha, World Scientific, River Edge, NJ, 1992, 3–45, arXiv: q-alg/9703025math/0202211math/0202212hep-th/9110056 | DOI | MR | Zbl | DOI | MR | Zbl | MR | MR | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[37] M. Goussarov, M. Polyak, O. Viro, Topology, 39:5 (2000), 1045–1068 | DOI | MR | Zbl

[38] A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, TMF, 166:1 (2011), 3–27, arXiv: ; J. Geom. Phys., 62 (2012), 148–155, arXiv: 0904.42271012.0433 | DOI | Zbl | DOI | MR | Zbl

[39] R. M. Kashaev, The hyperbolic volume of knots from quantum dilogarithm, arXiv: q-alg/9601025

[40] M. Mariño, JHEP, 12 (2008), 114, 56 pp., arXiv: 0805.3033 | DOI | MR | Zbl

[41] A. Morozov, Sh. Shakirov, JHEP, 12 (2009), 003, 33 pp., arXiv: ; From Brezin–Hikami to Harer–Zagier formulas for Gaussian correlators, arXiv: 0906.0031007.4100 | DOI | MR

[42] W. P. Thurston, The Geometry and Topology of Three-Manifolds, Lecture Notes at Princeton University, Princeton Univ. Press, Princeton, NJ, 1980

[43] R. Gelca, Math. Proc. Cambridge Philos. Soc., 133:2 (2002), 311–323 ; R. Gelca, J. Sain, J. Knot Theory Ramifications, 12:2 (2003), 187–201 | DOI | MR | Zbl | DOI | MR | Zbl

[44] S. Garoufalidis, C. Koutschan, Adv. Appl. Math., 47:4 (2011), 829–839, arXiv: 1011.6329 | DOI | MR | Zbl

[45] S. Garoufalidis, H. Morton, T. Vuong, The $\mathfrak{sl}_3$ colored Jones polynomial of the trefoil, arXiv: 1010.3147 | MR

[46] N. Nekrasov, Nucl. Phys. B, 531:1–3 (1998), 323–344, arXiv: ; A. Gorsky, S. Gukov, A. Mironov, Nucl. Phys. B, 518:3 (1998), 689–713, arXiv: ; A. Marshakov, A. Mironov, Nucl. Phys. B, 518:1–2 (1998), 59–91, arXiv: ; H. W. Braden, A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 448:3–4 (1999), 195–202, arXiv: ; Nucl. Phys. B, 558:1–2 (1999), 371–390, arXiv: hep-th/9609219hep-th/9710239hep-th/9711156hep-th/9812078hep-th/9902205 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[47] A. Mironov, A. Morozov, JHEP, 04 (2010), 040, 15 pp., arXiv: 0910.5670 | DOI | MR

[48] A. Popolitov, On relation between Nekrasov functions and BS periods in pure $SU(N)$ case, arXiv: ; W. He, Y.-G. Miao, Phys. Rev. D, 82:2 (2010), 025020, arXiv: ; K. Maruyoshi, M. Taki, Nucl. Phys. B, 841:3 (2010), 388–425, arXiv: ; A. Marshakov, A. Mironov, A. Morozov, J. Geom. Phys., 61:7 (2011), 1203–1222, arXiv: ; F. Fucito, J. F. Morales, R. Poghossian, D. R. Pacifici, JHEP, 05 (2011), 098, arXiv: ; Y. Zenkevich, Phys. Lett. B, 701:5 (2011), 630–639, arXiv: ; N. Dorey, T. J. Hollowood, S. Lee, Quantization of integrable systems and a $2d/4d$ duality, arXiv: 1001.14071006.12141006.45051011.44911103.44951103.48431103.5726 | DOI | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | MR

[49] N. A. Nekrasov, S. L. Shatashvili, Quantization of integrable systems and four dimensional Gauge theories, arXiv: 0908.4052 | MR

[50] A. Losev, N. Nekrasov, S. Shatashvili, Nucl. Phys. B, 534:3 (1998), 549–611, arXiv: ; G. Moore, N. Nekrasov, S. Shatashvili, Commun. Math. Phys, 209:1 (2000), 97–121, arXiv: hep-th/9711108hep-th/9712241 | DOI | MR | Zbl | DOI | MR | Zbl

[51] A. Mironov, A. Morozov, Sh. Shakirov, A. Smirnov, Nucl. Phys. B, 855:1 (2012), 128–151, arXiv: 1105.0948 | DOI | MR | Zbl

[52] S. Kharchev, D. Lebedev, M. Semenov-Tian-Shansky, Commun. Math. Phys., 225:3 (2002), 573–609, arXiv: ; S. Kharchev, D. Lebedev, J. Phys. A, 34:11 (2001), 2247–2258, arXiv: hep-th/0102180hep-th/0007040 | DOI | MR | Zbl | DOI | MR | Zbl

[53] N. Seiberg, E. Witten, Nucl. Phys. B, 426:1 (1994), 19–52, arXiv: ; 431:3 (1994), 484–550, arXiv: ; A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 355:3–4 (1995), 466–477, arXiv: ; R. Donagi, E. Witten, Nucl. Phys. B, 460:2 (1996), 299–334, arXiv: hep-th/9408099hep-th/9407087hep-th/9505035hep-th/9510101 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[54] H. Ooguri, C. Vafa, Nucl. Phys. B, 577:3 (2000), 419–438, arXiv: hep-th/9912123 | DOI | MR | Zbl

[55] T. Dimofte, Quantum Riemann surfaces in Chern–Simons theory, arXiv: 1102.4847 | MR

[56] R. Dijkgraaf, H. Fuji, Fortsch. Phys., 57:9 (2009), 825–856, arXiv: 0903.2084 | DOI | MR | Zbl

[57] R. M. Kashaev, O. Tirkkonen, Proof of the volume conjecture for torus knots, arXiv: math/9912210

[58] H. Murakami, Internat. J. Math., 15:6 (2004), 547–555, arXiv: math/0405126 | DOI | MR | Zbl