Limit behaviors of random connected graphs driven by a Poisson process
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 1, pp. 28-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a class of random connected graphs with random vertices and random edges with the random distribution of vertices given by a Poisson point process with the intensity $n$ localized at the vertices and the random distribution of the edges given by a connection function. Using the Avram–Bertsimas method constructed in 1992 for the central limit theorem on Euclidean functionals, we find the convergence rate of the central limit theorem process, the moderate deviation, and an upper bound for large deviations depending on the total length of all edges of the random connected graph.
Keywords: random connected graph, dependency graph, central limit theorem, moderate deviation, large deviation.
@article{TMF_2012_172_1_a2,
     author = {Zhonghao Xu and Yasunari Higuchi and Chunhua Hu},
     title = {Limit behaviors of random connected graphs driven by {a~Poisson} process},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {28--39},
     year = {2012},
     volume = {172},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a2/}
}
TY  - JOUR
AU  - Zhonghao Xu
AU  - Yasunari Higuchi
AU  - Chunhua Hu
TI  - Limit behaviors of random connected graphs driven by a Poisson process
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 28
EP  - 39
VL  - 172
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a2/
LA  - ru
ID  - TMF_2012_172_1_a2
ER  - 
%0 Journal Article
%A Zhonghao Xu
%A Yasunari Higuchi
%A Chunhua Hu
%T Limit behaviors of random connected graphs driven by a Poisson process
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 28-39
%V 172
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a2/
%G ru
%F TMF_2012_172_1_a2
Zhonghao Xu; Yasunari Higuchi; Chunhua Hu. Limit behaviors of random connected graphs driven by a Poisson process. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 1, pp. 28-39. http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a2/

[1] G. Grimmett, Percolation, Springer, Berlin, 1999 | MR | Zbl

[2] B. Bollobás, O. Riordan, Percolation, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl

[3] R. Meester, R. Roy, Continuum Percolation, Cambridge Tracts in Mathematics, 119, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl

[4] Z. H. Xu, Y. Higuchi, “A central limit theorem of random biased connected graphs”, Sci. China Math., 2012, to appear [in Cninese]

[5] K. Kuulasmaa, J. Appl. Probab., 19:4 (1982), 745–758 | DOI | MR | Zbl

[6] Z. H. Xu, D. Han, Chinese J. Appl. Probab. Statist., 26:6 (2010), 649–661 | MR | Zbl

[7] M. D. Penrose, Random Geometric Graphs, Oxford Studies in Probability, 5, Oxford Univ. Press, Oxford, 2003 | MR | Zbl

[8] P. J. Bickel, L. Breiman, Ann. Probab., 11:1 (1983), 185–214 | DOI | MR | Zbl

[9] D. Evans, A. J. Jones, Proc. R. Soc. London A, 458:2027 (2002), 2759–2799 | DOI | MR | Zbl

[10] N. Henze, Adv. Appl. Probab., 19:4 (1987), 873–895 | DOI | MR | Zbl

[11] Chzhun-Khao Syui, Ya. Khiguchi, Chun-Khua Khu, “Usilennyi zakon bolshikh chisel dlya grafov sluchainykh smeschennykh svyaznostei”, TMF, 2012, v pechati

[12] L. Wu, Ann. Probab., 23:1 (1995), 420–445 | DOI | MR

[13] F. Avram, D. Bertsimas, Ann. Appl. Probab., 2:1 (1992), 113–130 | DOI | MR | Zbl

[14] M. D. Penrose, Stochastic Process. Appl., 85:2 (2000), 295–320 | DOI | MR | Zbl

[15] M. D. Penrose, J. E. Yukich, Ann. Appl. Probab., 13:1 (2003), 277–303 | DOI | MR | Zbl

[16] P. Balister, B. Bollobás, A. Sarkar, M. Walters, Adv. Appl. Probab., 37:1 (2005), 1–24 | DOI | MR | Zbl

[17] S. H. Teng, F. F. Yao, Algorithmica, 49:3 (2007), 192–211 | DOI | MR | Zbl

[18] J. M. Steel, Statistical Science, 8:1 (1993), 48–56 | DOI

[19] P. Baldi, Y. Rinott, Ann. Probab., 17:4 (1989), 1646–1650 | DOI | MR | Zbl

[20] H. Doering, P. Eichelsbacher, Moderate deviations via cumulants, arXiv: 1012.5027 | MR

[21] Y. Baryshnikov, P. Eichelsbacher, T. Schreiber, J. E. Yukich, Ann. Inst. Henri Poincar- Probab. Statist., 44:3 (2008), 422–446, arXiv: math/0603022 | DOI | MR | Zbl

[22] S. Janson, Random Struct. Algorithms, 24:3 (2004), 234–248 | DOI | MR | Zbl

[23] S. Janson, T. Łuczak, A. Ruciński, Random Graphs, Wiley and Sons, New York, 2000 | MR | Zbl

[24] S. Janson, A. Ruciński, Random Struct. Algorithms, 20:3 (2002), 317–342 | DOI | MR | Zbl

[25] F. Xue, P. R. Kumar, Wireless Networks, 10:2 (2004), 169–181 | DOI