Twisted convolution and Moyal star product of generalized functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 1, pp. 9-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider nuclear function spaces on which the Weyl–Heisenberg group acts continuously and study the basic properties of the twisted convolution product of the functions with the dual space elements. The final theorem characterizes the corresponding algebra of convolution multipliers and shows that it contains all sufficiently rapidly decreasing functionals in the dual space. Consequently, we obtain a general description of the Moyal multiplier algebra of the Fourier-transformed space. The results extend the Weyl symbol calculus beyond the traditional framework of tempered distributions.
Keywords: Moyal product, twisted convolution, Weyl–Heisenberg group, noncommutative field theory, topological $*$-algebra, generalized function.
Mots-clés : Weyl symbol
@article{TMF_2012_172_1_a1,
     author = {M. A. Soloviev},
     title = {Twisted convolution and {Moyal} star product of generalized functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {9--27},
     year = {2012},
     volume = {172},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a1/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - Twisted convolution and Moyal star product of generalized functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 9
EP  - 27
VL  - 172
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a1/
LA  - ru
ID  - TMF_2012_172_1_a1
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T Twisted convolution and Moyal star product of generalized functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 9-27
%V 172
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a1/
%G ru
%F TMF_2012_172_1_a1
M. A. Soloviev. Twisted convolution and Moyal star product of generalized functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 1, pp. 9-27. http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a1/

[1] F. A. Berezin, M. A. Shubin, Uravnenie Shredingera, Izd-vo MGU, M., 1983 | MR | Zbl

[2] C. K. Zachos, D. B. Fairlie, T. L. Curtright (eds.), Quantum Mechanics in Phase Space, World Scientific Series in 20th Century Physics, 34, World Scientific, Singapore, 2005 | DOI | MR | Zbl

[3] J. von Neumann, Math. Ann., 104:1 (1931), 570–578 | DOI | MR | Zbl

[4] M. A. Antonets, Lett. Math. Phys., 2:3 (1978), 241–245 | DOI | MR

[5] M. A. Antonets, Matem. sb., 107(149):1(9) (1978), 20–36 | DOI | MR | Zbl

[6] M. A. Antonets, TMF, 38:3 (1979), 331–344 | DOI | MR

[7] J. M. Maillard, J. Geom. Phys., 3:2 (1986), 231–261 | DOI | MR | Zbl

[8] J. M. Gracia-Bondia, J. C. Várilly, J. Math. Phys., 29:4 (1988), 869–879 | DOI | MR | Zbl

[9] R. Estrada, J. M. Gracia-Bondia, J. C. Várilly, J. Math. Phys., 30:12 (1989), 2789–2796 | DOI | MR | Zbl

[10] V. Gayral, J. M. Gracia-Bondia, B. Iochum, T. Schücker, J. C. Várilly, Commun. Math. Phys., 246:3 (2004), 569–623, arXiv: hep-th/0307241 | DOI | MR | Zbl

[11] R. J. Szabo, Phys. Rep., 378:4 (2003), 207–299, arXiv: hep-th/0109162 | DOI | MR | Zbl

[12] S. Doplicher, K. Fredenhagen, J. E. Roberts, Phys. Lett. B, 331:1–2 (1994), 39–44 | DOI | MR

[13] S. Doplicher, K. Fredenhagen, J. E. Roberts, Commun. Math. Phys., 172:1 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | Zbl

[14] N. Seiberg, E. Witten, JHEP, 09 (1999), 032, 93 pp., arXiv: hep-th/9908142 | DOI | MR | Zbl

[15] L. Álvarez-Gaumé, M. A. Vázquez-Mozo, Nucl. Phys. B, 668:1–2 (2003), 293–321, arXiv: hep-th/0305093 | DOI | MR | Zbl

[16] V. E. Hubeny, M. Rangamani, S. F. Ross, JHEP, 07 (2005), 037, 32 pp., arXiv: hep-th/0504034 | DOI | MR

[17] M. A. Solovev, TMF, 147:2 (2006), 257–269, arXiv: hep-th/0605249 | DOI | MR | Zbl

[18] M. A. Solovev, TMF, 153:1 (2007), 3–17, arXiv: 0708.0811 | DOI | MR | Zbl

[19] M. Chaichian, M. Mnatsakanova, A. Tureanu, Yu. Vernov, JHEP, 09 (2008), 125, 11 pp., arXiv: 0706.1712 | DOI | MR

[20] O. W. Greenberg, Phys. Rev. D, 73:4 (2006), 045014, 5 pp., arXiv: hep-th/0508057 | DOI | MR

[21] M. A. Soloviev, J. Phys A, 40:48 (2007), 14593–14604, arXiv: 0708.1151 | DOI | MR | Zbl

[22] M. A. Soloviev, Phys. Rev. D, 77:12 (2008), 125013, 11 pp., arXiv: 0802.0997 | DOI | MR

[23] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, Vyp. 2, Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958 | MR | Zbl

[24] V. P. Palamodov, Trudy MMO, 11 (1962), 309–350 | MR | Zbl

[25] M. A. Soloviev, J. Math. Phys., 52:6 (2011), 063502, 18 pp., arXiv: 1012.0669 | DOI | MR | Zbl

[26] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1966 | MR

[27] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[28] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986 | MR

[29] M. A. Soloviev, J. Math. Phys., 51:9 (2010), 093520, 20 pp., arXiv: 1012.3546 | DOI | MR | Zbl

[30] A. Grothendieck, Mem. Amer. Math. Soc., 16 (1955), 140 pp. | MR | Zbl

[31] G. Köthe, Topological Vector Spaces. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], 237, Springer, New York, 1979 | DOI | MR | Zbl

[32] V. V. Zharinov, UMN, 34:4(208) (1979), 97–131 | DOI | MR | Zbl

[33] M. Morimoto, An Introduction to Sato's Hyperfunctions, Translations of Mathematical Monographs, 129, AMS, Providence, RI, 1993 | MR | Zbl

[34] M. A. Solovev, TMF, 163:3 (2010), 413–429, arXiv: 1012.3536 | DOI | MR

[35] M. Morimoto, Proc. Japan Acad., 51:2 (1975), 87–91 | DOI | MR | Zbl

[36] E. Brüning, S. Nagamachi, J. Math. Phys., 45:6 (2004), 2199–2231 | DOI | MR | Zbl

[37] M. A. Soloviev, J. Math. Phys., 50:12 (2009), 123519, 17 pp., arXiv: 0912.0595 | DOI | MR | Zbl

[38] D. H. T. Franco, C. M. M. Polito, J. Math. Phys., 46:8 (2005), 083503, 11 pp., arXiv: hep-th/0403028 | DOI | MR | Zbl

[39] B. S. Mityagin, Trudy MMO, 9 (1960), 317–328 | MR | Zbl

[40] M. A. Solovev, TMF, 128:3 (2001), 492–514, arXiv: math-ph/0112052 | DOI | MR | Zbl