Cohomologies of spaces of Schwartz distributions
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 1, pp. 3-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We calculate cohomologies of linear spaces of distributions regarded as linear functionals over the corresponding test-function algebras.
Keywords: Schwartz distribution, cohomology, spherical representation.
@article{TMF_2012_172_1_a0,
     author = {V. V. Zharinov},
     title = {Cohomologies of spaces of {Schwartz} distributions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--8},
     year = {2012},
     volume = {172},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a0/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Cohomologies of spaces of Schwartz distributions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 3
EP  - 8
VL  - 172
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a0/
LA  - ru
ID  - TMF_2012_172_1_a0
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Cohomologies of spaces of Schwartz distributions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 3-8
%V 172
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a0/
%G ru
%F TMF_2012_172_1_a0
V. V. Zharinov. Cohomologies of spaces of Schwartz distributions. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 1, pp. 3-8. http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a0/

[1] L. Schwartz, Théorie des distributions. Tome I, Actualites scientifiques et industrielles, 1091, Hermann Cie., Paris, 1950 ; Tome II, Actualites scientifiques et industrielles, 1121, 1951 | MR | Zbl | MR | Zbl

[2] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Fizmatlit, M., 1959 | MR | Zbl

[3] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl

[4] V. V. Zharinov, TMF, 170:3 (2012), 323–334 | DOI | Zbl

[5] T. Aubin, A Course in Differential Geometry, Graduate Studies in Mathematics, 27, AMS, Providence, RI, 2001 | MR | Zbl

[6] V. V. Zharinov, Integral Transforms Spec. Funct., 6:1–4 (1998), 347–356 | DOI | MR | Zbl