Cohomologies of spaces of Schwartz distributions
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 1, pp. 3-8
Cet article a éte moissonné depuis la source Math-Net.Ru
We calculate cohomologies of linear spaces of distributions regarded as linear functionals over the corresponding test-function algebras.
Keywords:
Schwartz distribution, cohomology, spherical representation.
@article{TMF_2012_172_1_a0,
author = {V. V. Zharinov},
title = {Cohomologies of spaces of {Schwartz} distributions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--8},
year = {2012},
volume = {172},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a0/}
}
V. V. Zharinov. Cohomologies of spaces of Schwartz distributions. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 1, pp. 3-8. http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a0/
[1] L. Schwartz, Théorie des distributions. Tome I, Actualites scientifiques et industrielles, 1091, Hermann Cie., Paris, 1950 ; Tome II, Actualites scientifiques et industrielles, 1121, 1951 | MR | Zbl | MR | Zbl
[2] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Fizmatlit, M., 1959 | MR | Zbl
[3] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl
[4] V. V. Zharinov, TMF, 170:3 (2012), 323–334 | DOI | Zbl
[5] T. Aubin, A Course in Differential Geometry, Graduate Studies in Mathematics, 27, AMS, Providence, RI, 2001 | MR | Zbl
[6] V. V. Zharinov, Integral Transforms Spec. Funct., 6:1–4 (1998), 347–356 | DOI | MR | Zbl