Continuum analogue of bimodal distributions
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 483-492 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Boltzmann equation for the hard-sphere model. We construct an explicit approximate solution of this equation in the form of a continuum distribution in the case of global Maxwellians. We obtain some sufficient conditions for attaining the minimum of the uniform-integral mismatch between the sides of the equation.
Keywords: hard sphere, Boltzmann equation, Maxwellian, mismatch, continuum distribution.
@article{TMF_2012_171_3_a9,
     author = {V. D. Gordevskii and E. S. Sazonova},
     title = {Continuum analogue of bimodal distributions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {483--492},
     year = {2012},
     volume = {171},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a9/}
}
TY  - JOUR
AU  - V. D. Gordevskii
AU  - E. S. Sazonova
TI  - Continuum analogue of bimodal distributions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 483
EP  - 492
VL  - 171
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a9/
LA  - ru
ID  - TMF_2012_171_3_a9
ER  - 
%0 Journal Article
%A V. D. Gordevskii
%A E. S. Sazonova
%T Continuum analogue of bimodal distributions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 483-492
%V 171
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a9/
%G ru
%F TMF_2012_171_3_a9
V. D. Gordevskii; E. S. Sazonova. Continuum analogue of bimodal distributions. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 483-492. http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a9/

[1] K. Cherchinyani, Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978 | MR

[2] M. Kogan, Dinamika razrezhennogo gaza, Nauka, M., 1967 | Zbl

[3] T. Karleman, Matematicheskie zadachi kineticheskoi teorii gazov, IL, M., 1960 | MR | Zbl

[4] A. V. Bobylev, Dokl. AN SSSR, 225:6 (1975), 1296–1299 | MR | Zbl

[5] K. Krook, T. T. Wu, Phys. Fluids, 20:10 (1977), 1589–1595 | DOI | Zbl

[6] H. M. Ernst, J. Statist. Phys., 34:5–6 (1984), 1001–1017 | DOI | MR

[7] I. E. Tamm, Tr. FIAN, 29 (1965), 239–249

[8] H. M. Mott-Smith, Phys. Rev., 82:6 (1951), 885–892 | DOI | MR | Zbl

[9] R. Narasimha, S. M. Deshpande, J. Fluid Mech., 36:3 (1969), 555–570 | DOI | Zbl

[10] I. Hosokawa, J. Phys. Soc. Jpn., 57:6 (1988), 1865–1867 | DOI

[11] V. D. Gordevskii, TMF, 114:1 (1998), 126–136 | DOI | MR | Zbl

[12] V. D. Gordevskii, TMF, 126:2 (2001), 283–300 | DOI | MR | Zbl

[13] V. D. Gordevskii, TMF, 161:2 (2009), 278–286 | DOI | MR | Zbl

[14] V. D. Gordevskyy, Nonlinear Anal., 53:3–4 (2003), 481–494 | DOI | MR | Zbl

[15] V. D. Gordevskii, TMF, 135:2 (2003), 303–314 | DOI | MR | Zbl

[16] V. D. Gordevsky, Math. Methods Appl. Sci, 21:16 (1998), 1479–1494 | 3.0.CO;2-I class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR