Stationary Schrödinger equation in nonrelativistic quantum mechanics and the functional integral
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 452-474 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We formulate a method for representing solutions of homogeneous second-order equations in the form of a functional integral or path integral. As an example, we derive solutions of second-order equations with constant coefficients and a linear potential. The method can be used to find general solutions of the stationary Schrödinger equation. We show how to find the spectrum and eigenfunctions of the quantum oscillator equation. We obtain a solution of the stationary Schrödinger equation in the semiclassical approximation, without a singularity at the turning point. In that approximation, we find the coefficient of transmission through a potential barrier. We obtain a representation for the elastic potential scattering amplitude in the form of a functional integral.
Keywords: second-order homogeneous equation, functional integral, stationary Schrödinger equation, semiclassical approximation, elastic potential scattering amplitude.
@article{TMF_2012_171_3_a7,
     author = {G. V. Efimov},
     title = {Stationary {Schr\"odinger} equation in nonrelativistic quantum mechanics and the~functional integral},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {452--474},
     year = {2012},
     volume = {171},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a7/}
}
TY  - JOUR
AU  - G. V. Efimov
TI  - Stationary Schrödinger equation in nonrelativistic quantum mechanics and the functional integral
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 452
EP  - 474
VL  - 171
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a7/
LA  - ru
ID  - TMF_2012_171_3_a7
ER  - 
%0 Journal Article
%A G. V. Efimov
%T Stationary Schrödinger equation in nonrelativistic quantum mechanics and the functional integral
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 452-474
%V 171
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a7/
%G ru
%F TMF_2012_171_3_a7
G. V. Efimov. Stationary Schrödinger equation in nonrelativistic quantum mechanics and the functional integral. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 452-474. http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a7/

[1] R. Feinman, A. Khibs, Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | MR | Zbl

[2] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Marketing, World Scientific, Hackensack, NJ, 2006 | MR | Zbl

[3] V. N. Popov, Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi mekhanike, Atomizdat, M., 1976 | MR

[4] Zh. Zinn-Zhyustin, Kontinualnyi integral v kvantovoi mekhanike, Fizmatlit, M., 2006 | MR

[5] A. Das, Field Theory. A Path Integral Approach, World Scientific Lecture Notes in Physics, 75, World Scientific, New York, 2006 | DOI | MR | Zbl

[6] E. Witten, “A new look at the path integral of quantum mechanics”, Perspectives in Mathematics and Physics, Surveys in Differential Geometry, 15, eds. T. Mrowka et al., Internat. Press, Somerville, MA, 2011, 345–419, arXiv: 1009.6032 | DOI | MR | Zbl

[7] V. Dineykhan, G. V. Efimov, G. Ganbold, S. N. Nedelko, Oscillator Representation in Quantun Physics, v. 26, Lecture Notes in Physics. New Series m, Springer, Berlin, 1995 | MR | Zbl

[8] G. V. Efimov, Metod funktsionalnogo integrirovaniya, Mezhdunarodnyi universitet prirody, obschestva i cheloveka “Dubna”, Dubna, 2008

[9] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1988 | MR | Zbl

[10] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | Zbl

[11] I. M. Gel'fand, A. M. Yaglom, J. Math. Phys., 1:1 (1960), 48–69 | DOI | MR | Zbl

[12] J. Ankerhold, Quantum Tunneling in Complex Systems. The Semiclassical Approach, Springer Tracts in Modern Physics, 224, Springer, Berlin, 2007 | MR | Zbl

[13] D. Gelman, L. Spruch, J. Math. Phys., 10:12 (1969), 2240–2254 | DOI

[14] W. B. Campbell, P. Finkler, C. E. Jones, M. N. Misheloff, Phys. Rev. D, 12:8 (1975), 2363–2369 | DOI

[15] A. V. Vasilev, A. V. Kuzmenko, TMF, 31:3 (1977), 313–326 | DOI | MR

[16] B. M. Barbashov, V. V. Nesterenko, Priblizhenie eikonala dlya protsessov vysokoenergeticheskogo rasseyaniya chastits, Izd-vo MGU, M., 1977

[17] J. Carron, R. Rosenfelder, Eur. Phys. J. A, 45:2 (2010), 193–215 | DOI | MR