@article{TMF_2012_171_3_a7,
author = {G. V. Efimov},
title = {Stationary {Schr\"odinger} equation in nonrelativistic quantum mechanics and the~functional integral},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {452--474},
year = {2012},
volume = {171},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a7/}
}
TY - JOUR AU - G. V. Efimov TI - Stationary Schrödinger equation in nonrelativistic quantum mechanics and the functional integral JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 452 EP - 474 VL - 171 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a7/ LA - ru ID - TMF_2012_171_3_a7 ER -
G. V. Efimov. Stationary Schrödinger equation in nonrelativistic quantum mechanics and the functional integral. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 452-474. http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a7/
[1] R. Feinman, A. Khibs, Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | MR | Zbl
[2] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Marketing, World Scientific, Hackensack, NJ, 2006 | MR | Zbl
[3] V. N. Popov, Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi mekhanike, Atomizdat, M., 1976 | MR
[4] Zh. Zinn-Zhyustin, Kontinualnyi integral v kvantovoi mekhanike, Fizmatlit, M., 2006 | MR
[5] A. Das, Field Theory. A Path Integral Approach, World Scientific Lecture Notes in Physics, 75, World Scientific, New York, 2006 | DOI | MR | Zbl
[6] E. Witten, “A new look at the path integral of quantum mechanics”, Perspectives in Mathematics and Physics, Surveys in Differential Geometry, 15, eds. T. Mrowka et al., Internat. Press, Somerville, MA, 2011, 345–419, arXiv: 1009.6032 | DOI | MR | Zbl
[7] V. Dineykhan, G. V. Efimov, G. Ganbold, S. N. Nedelko, Oscillator Representation in Quantun Physics, v. 26, Lecture Notes in Physics. New Series m, Springer, Berlin, 1995 | MR | Zbl
[8] G. V. Efimov, Metod funktsionalnogo integrirovaniya, Mezhdunarodnyi universitet prirody, obschestva i cheloveka “Dubna”, Dubna, 2008
[9] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1988 | MR | Zbl
[10] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | Zbl
[11] I. M. Gel'fand, A. M. Yaglom, J. Math. Phys., 1:1 (1960), 48–69 | DOI | MR | Zbl
[12] J. Ankerhold, Quantum Tunneling in Complex Systems. The Semiclassical Approach, Springer Tracts in Modern Physics, 224, Springer, Berlin, 2007 | MR | Zbl
[13] D. Gelman, L. Spruch, J. Math. Phys., 10:12 (1969), 2240–2254 | DOI
[14] W. B. Campbell, P. Finkler, C. E. Jones, M. N. Misheloff, Phys. Rev. D, 12:8 (1975), 2363–2369 | DOI
[15] A. V. Vasilev, A. V. Kuzmenko, TMF, 31:3 (1977), 313–326 | DOI | MR
[16] B. M. Barbashov, V. V. Nesterenko, Priblizhenie eikonala dlya protsessov vysokoenergeticheskogo rasseyaniya chastits, Izd-vo MGU, M., 1977
[17] J. Carron, R. Rosenfelder, Eur. Phys. J. A, 45:2 (2010), 193–215 | DOI | MR