Asymptotic behavior of an eigenvalue of the two-particle discrete Schrödinger operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 438-451 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a two-particle discrete Schrödinger operator corresponding to a system of two identical particles on a lattice interacting via an attractive pairwise zero-range potential. We show that there is a unique eigenvalue below the bottom of the essential spectrum for all values of the coupling constant and two-particle quasimomentum. We obtain a convergent expansion for the eigenvalue.
Keywords: Hamiltonian, discrete Schrödinger operator, quasimomentum, essential spectrum, eigenvalue, asymptotic expansion, eigenvalue expansion, Fredholm determinant.
@article{TMF_2012_171_3_a6,
     author = {S. N. Lakaev and A. M. Khalkhuzhaev and Sh. S. Lakaev},
     title = {Asymptotic behavior of an~eigenvalue of the~two-particle discrete {Schr\"odinger} operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {438--451},
     year = {2012},
     volume = {171},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a6/}
}
TY  - JOUR
AU  - S. N. Lakaev
AU  - A. M. Khalkhuzhaev
AU  - Sh. S. Lakaev
TI  - Asymptotic behavior of an eigenvalue of the two-particle discrete Schrödinger operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 438
EP  - 451
VL  - 171
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a6/
LA  - ru
ID  - TMF_2012_171_3_a6
ER  - 
%0 Journal Article
%A S. N. Lakaev
%A A. M. Khalkhuzhaev
%A Sh. S. Lakaev
%T Asymptotic behavior of an eigenvalue of the two-particle discrete Schrödinger operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 438-451
%V 171
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a6/
%G ru
%F TMF_2012_171_3_a6
S. N. Lakaev; A. M. Khalkhuzhaev; Sh. S. Lakaev. Asymptotic behavior of an eigenvalue of the two-particle discrete Schrödinger operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 438-451. http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a6/

[1] S. Albeverio, S. N. Lakaev, K. A. Makarov, Z. I. Muminov, Commun. Math. Phys., 262:1 (2006), 91–115, arXiv: math-ph/0501013 | DOI | MR | Zbl

[2] M. Klaus, Ann. Phys., 108:2 (1977), 288–300 | DOI | MR | Zbl

[3] B. Simon, Ann. Phys., 97:2 (1976), 279–288 | DOI | MR | Zbl

[4] M. Klaus, B. Simon, Ann. Phys., 130:2 (1980), 251–281 | DOI | MR | Zbl

[5] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[6] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | Zbl

[7] S. N. Lakaev, Sh. Yu. Holmatov, J. Phys. A, 44:13 (2011), 135304, 19 pp., arXiv: 1010.2348 | DOI | MR | Zbl

[8] S. N. Lakaev, TMF, 91:1 (1992), 51–65 | DOI | MR