Asymptotic behavior of an~eigenvalue of the~two-particle discrete Schr\"odinger operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 438-451
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a two-particle discrete Schrödinger operator corresponding to a system of two identical particles on a lattice interacting via an attractive pairwise zero-range potential. We show that there is a unique eigenvalue below the bottom of the essential spectrum for all values of the coupling constant and two-particle quasimomentum. We obtain a convergent expansion for the eigenvalue.
Keywords:
Hamiltonian, discrete Schrödinger operator, quasimomentum, essential spectrum, eigenvalue, asymptotic expansion, eigenvalue expansion, Fredholm determinant.
@article{TMF_2012_171_3_a6,
author = {S. N. Lakaev and A. M. Khalkhuzhaev and Sh. S. Lakaev},
title = {Asymptotic behavior of an~eigenvalue of the~two-particle discrete {Schr\"odinger} operator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {438--451},
publisher = {mathdoc},
volume = {171},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a6/}
}
TY - JOUR AU - S. N. Lakaev AU - A. M. Khalkhuzhaev AU - Sh. S. Lakaev TI - Asymptotic behavior of an~eigenvalue of the~two-particle discrete Schr\"odinger operator JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 438 EP - 451 VL - 171 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a6/ LA - ru ID - TMF_2012_171_3_a6 ER -
%0 Journal Article %A S. N. Lakaev %A A. M. Khalkhuzhaev %A Sh. S. Lakaev %T Asymptotic behavior of an~eigenvalue of the~two-particle discrete Schr\"odinger operator %J Teoretičeskaâ i matematičeskaâ fizika %D 2012 %P 438-451 %V 171 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a6/ %G ru %F TMF_2012_171_3_a6
S. N. Lakaev; A. M. Khalkhuzhaev; Sh. S. Lakaev. Asymptotic behavior of an~eigenvalue of the~two-particle discrete Schr\"odinger operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 438-451. http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a6/