Asymptotic behavior of an eigenvalue of the two-particle discrete Schrödinger operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 438-451
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a two-particle discrete Schrödinger operator corresponding to a system of two identical particles on a lattice interacting via an attractive pairwise zero-range potential. We show that there is a unique eigenvalue below the bottom of the essential spectrum for all values of the coupling constant and two-particle quasimomentum. We obtain a convergent expansion for the eigenvalue.
Keywords:
Hamiltonian, discrete Schrödinger operator, quasimomentum, essential spectrum, eigenvalue, asymptotic expansion, eigenvalue expansion, Fredholm determinant.
@article{TMF_2012_171_3_a6,
author = {S. N. Lakaev and A. M. Khalkhuzhaev and Sh. S. Lakaev},
title = {Asymptotic behavior of an~eigenvalue of the~two-particle discrete {Schr\"odinger} operator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {438--451},
year = {2012},
volume = {171},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a6/}
}
TY - JOUR AU - S. N. Lakaev AU - A. M. Khalkhuzhaev AU - Sh. S. Lakaev TI - Asymptotic behavior of an eigenvalue of the two-particle discrete Schrödinger operator JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 438 EP - 451 VL - 171 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a6/ LA - ru ID - TMF_2012_171_3_a6 ER -
%0 Journal Article %A S. N. Lakaev %A A. M. Khalkhuzhaev %A Sh. S. Lakaev %T Asymptotic behavior of an eigenvalue of the two-particle discrete Schrödinger operator %J Teoretičeskaâ i matematičeskaâ fizika %D 2012 %P 438-451 %V 171 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a6/ %G ru %F TMF_2012_171_3_a6
S. N. Lakaev; A. M. Khalkhuzhaev; Sh. S. Lakaev. Asymptotic behavior of an eigenvalue of the two-particle discrete Schrödinger operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 438-451. http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a6/
[1] S. Albeverio, S. N. Lakaev, K. A. Makarov, Z. I. Muminov, Commun. Math. Phys., 262:1 (2006), 91–115, arXiv: math-ph/0501013 | DOI | MR | Zbl
[2] M. Klaus, Ann. Phys., 108:2 (1977), 288–300 | DOI | MR | Zbl
[3] B. Simon, Ann. Phys., 97:2 (1976), 279–288 | DOI | MR | Zbl
[4] M. Klaus, B. Simon, Ann. Phys., 130:2 (1980), 251–281 | DOI | MR | Zbl
[5] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[6] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | Zbl
[7] S. N. Lakaev, Sh. Yu. Holmatov, J. Phys. A, 44:13 (2011), 135304, 19 pp., arXiv: 1010.2348 | DOI | MR | Zbl