Integrable boundary conditions for $(2+1)$-dimensional models of mathematical physics
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 430-437 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the question of integrable boundary-value problems in the examples of the two-dimensional Toda chain and Kadomtsev–Petviashvili equation. We discuss the problems that are integrable from the standpoints of two basic definitions of integrability. As a result, we propose a method for constructing a hierarchy of integrable boundary-value problems where the boundaries are cylindric surfaces in the space of three variables. We write explicit formulas describing wide classes of solutions of these boundary-value problems for the two-dimensional Toda chain and Kadomtsev–Petviashvili equation.
Keywords: two-dimensional Toda chain, Kadomtsev–Petviashvili equation, integrable boundary-value problem.
@article{TMF_2012_171_3_a5,
     author = {V. L. Vereshchagin},
     title = {Integrable boundary conditions for $(2+1)$-dimensional models of mathematical physics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {430--437},
     year = {2012},
     volume = {171},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a5/}
}
TY  - JOUR
AU  - V. L. Vereshchagin
TI  - Integrable boundary conditions for $(2+1)$-dimensional models of mathematical physics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 430
EP  - 437
VL  - 171
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a5/
LA  - ru
ID  - TMF_2012_171_3_a5
ER  - 
%0 Journal Article
%A V. L. Vereshchagin
%T Integrable boundary conditions for $(2+1)$-dimensional models of mathematical physics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 430-437
%V 171
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a5/
%G ru
%F TMF_2012_171_3_a5
V. L. Vereshchagin. Integrable boundary conditions for $(2+1)$-dimensional models of mathematical physics. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 430-437. http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a5/

[1] B. B. Kadomtsev, V. I. Petviashvili, Dokl. AN SSSR, 192:4 (1970), 753–756 | Zbl

[2] A. V. Mikhailov, Pisma v ZhETF, 30:7 (1979), 443–448

[3] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii,, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[4] V. S. Dryuma, Pisma v ZhETF, 19:12 (1974), 753–755

[5] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | DOI | MR | Zbl

[6] E. K. Sklyanin, Funkts. analiz i ego pril., 21:2 (1987), 86–87 | DOI | MR | Zbl

[7] I. T. Khabibullin, TMF, 91:3 (1992), 363–376 | MR | Zbl

[8] I. T. Khabibullin, E. V. Gudkova, Funkts. analiz i ego pril., 38:2 (2004), 71–83 | DOI | MR | Zbl

[9] I. T. Khabibullin, E. V. Gudkova, TMF, 140:2 (2004), 230–240 | DOI | MR | Zbl

[10] V. Adler, B. Gürel, M. Gürses, I. T. Habibullin, J. Phys. A., 30:10 (1997), 3505–3513 | DOI | MR | Zbl

[11] M. Gürses, I. T. Habibullin, K. Zheltukhin, J. Math. Phys., 48:10 (2007), 102702, 16 pp. | DOI | MR | Zbl

[12] V. L. Vereschagin, Phys. Lett. A, 374:46 (2010), 4653–4657 | DOI | MR | Zbl

[13] V. L. Vereschagin, Explicit solutions to boundary problems for $(2+1)$-dimensional integrable systems, arXiv: 1012.3521 | MR