Integrable boundary conditions for $(2+1)$-dimensional models of mathematical physics
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 430-437
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the question of integrable boundary-value problems in the examples of the two-dimensional Toda chain and Kadomtsev–Petviashvili equation. We discuss the problems that are integrable from the standpoints of two basic definitions of integrability. As a result, we propose a method for constructing a hierarchy of integrable boundary-value problems where the boundaries are cylindric surfaces in the space of three variables. We write explicit formulas describing wide classes of solutions of these boundary-value problems for the two-dimensional Toda chain and Kadomtsev–Petviashvili equation.
Keywords:
two-dimensional Toda chain, Kadomtsev–Petviashvili equation, integrable boundary-value problem.
@article{TMF_2012_171_3_a5,
author = {V. L. Vereshchagin},
title = {Integrable boundary conditions for $(2+1)$-dimensional models of mathematical physics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {430--437},
publisher = {mathdoc},
volume = {171},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a5/}
}
TY - JOUR AU - V. L. Vereshchagin TI - Integrable boundary conditions for $(2+1)$-dimensional models of mathematical physics JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 430 EP - 437 VL - 171 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a5/ LA - ru ID - TMF_2012_171_3_a5 ER -
V. L. Vereshchagin. Integrable boundary conditions for $(2+1)$-dimensional models of mathematical physics. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 430-437. http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a5/