Pauli graphs, Riemann hypothesis, and Goldbach pairs
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 417-429
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the Pauli group $\mathcal{P}_q$ generated by unitary quantum generators
$X$ (shift) and $Z$ (clock) acting on vectors of the $q$-dimensional Hilbert space. It has been found that the number of maximal
mutually commuting sets within $\mathcal{P}_q$ is controlled by the Dedekind psi
function $\psi(q)$ and that there exists a specific inequality involving the Euler constant $\gamma\sim0.577$ that is only satisfied at specific low
dimensions $q\in\mathcal{A}=\{2,3,4,5,6,8,10,12,18,30\}$. The set $\mathcal{A}$ is closely
related to the set $\mathcal{A}\cup\{1,24\}$ of integers that are totally Goldbach,
i.e., that consist of all primes $p$ with $p$ not dividing $n$ and such
that $n-p$ is prime. In the extreme high-dimensional case, at primorial
numbers $N_r$, the Hardy–Littlewood function $R(q)$ is introduced for
estimating the number of Goldbach pairs, and a new inequality
(Theorem $4$) is established for the equivalence to the Riemann
hypothesis in terms of $R(N_r)$. We discuss these number-theoretical
properties in the context of the qudit commutation structure.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Riemann hypothesis, Goldbach pair, generalized Pauli group, qudit commutation structure.
                    
                  
                
                
                @article{TMF_2012_171_3_a4,
     author = {M. Planat and F. Anselmi and P. Sol\'e},
     title = {Pauli graphs, {Riemann} hypothesis, and {Goldbach} pairs},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {417--429},
     publisher = {mathdoc},
     volume = {171},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a4/}
}
                      
                      
                    TY - JOUR AU - M. Planat AU - F. Anselmi AU - P. Solé TI - Pauli graphs, Riemann hypothesis, and Goldbach pairs JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 417 EP - 429 VL - 171 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a4/ LA - ru ID - TMF_2012_171_3_a4 ER -
M. Planat; F. Anselmi; P. Solé. Pauli graphs, Riemann hypothesis, and Goldbach pairs. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 417-429. http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a4/
