Pauli graphs, Riemann hypothesis, and Goldbach pairs
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 417-429

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Pauli group $\mathcal{P}_q$ generated by unitary quantum generators $X$ (shift) and $Z$ (clock) acting on vectors of the $q$-dimensional Hilbert space. It has been found that the number of maximal mutually commuting sets within $\mathcal{P}_q$ is controlled by the Dedekind psi function $\psi(q)$ and that there exists a specific inequality involving the Euler constant $\gamma\sim0.577$ that is only satisfied at specific low dimensions $q\in\mathcal{A}=\{2,3,4,5,6,8,10,12,18,30\}$. The set $\mathcal{A}$ is closely related to the set $\mathcal{A}\cup\{1,24\}$ of integers that are totally Goldbach, i.e., that consist of all primes $p$ with $p$ not dividing $n$ and such that $n-p$ is prime. In the extreme high-dimensional case, at primorial numbers $N_r$, the Hardy–Littlewood function $R(q)$ is introduced for estimating the number of Goldbach pairs, and a new inequality (Theorem $4$) is established for the equivalence to the Riemann hypothesis in terms of $R(N_r)$. We discuss these number-theoretical properties in the context of the qudit commutation structure.
Keywords: Riemann hypothesis, Goldbach pair, generalized Pauli group, qudit commutation structure.
@article{TMF_2012_171_3_a4,
     author = {M. Planat and F. Anselmi and P. Sol\'e},
     title = {Pauli graphs, {Riemann} hypothesis, and {Goldbach} pairs},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {417--429},
     publisher = {mathdoc},
     volume = {171},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a4/}
}
TY  - JOUR
AU  - M. Planat
AU  - F. Anselmi
AU  - P. Solé
TI  - Pauli graphs, Riemann hypothesis, and Goldbach pairs
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 417
EP  - 429
VL  - 171
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a4/
LA  - ru
ID  - TMF_2012_171_3_a4
ER  - 
%0 Journal Article
%A M. Planat
%A F. Anselmi
%A P. Solé
%T Pauli graphs, Riemann hypothesis, and Goldbach pairs
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 417-429
%V 171
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a4/
%G ru
%F TMF_2012_171_3_a4
M. Planat; F. Anselmi; P. Solé. Pauli graphs, Riemann hypothesis, and Goldbach pairs. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 417-429. http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a4/