Pauli graphs, Riemann hypothesis, and Goldbach pairs
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 417-429 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Pauli group $\mathcal{P}_q$ generated by unitary quantum generators $X$ (shift) and $Z$ (clock) acting on vectors of the $q$-dimensional Hilbert space. It has been found that the number of maximal mutually commuting sets within $\mathcal{P}_q$ is controlled by the Dedekind psi function $\psi(q)$ and that there exists a specific inequality involving the Euler constant $\gamma\sim0.577$ that is only satisfied at specific low dimensions $q\in\mathcal{A}=\{2,3,4,5,6,8,10,12,18,30\}$. The set $\mathcal{A}$ is closely related to the set $\mathcal{A}\cup\{1,24\}$ of integers that are totally Goldbach, i.e., that consist of all primes $p with $p$ not dividing $n$ and such that $n-p$ is prime. In the extreme high-dimensional case, at primorial numbers $N_r$, the Hardy–Littlewood function $R(q)$ is introduced for estimating the number of Goldbach pairs, and a new inequality (Theorem $4$) is established for the equivalence to the Riemann hypothesis in terms of $R(N_r)$. We discuss these number-theoretical properties in the context of the qudit commutation structure.
Keywords: Riemann hypothesis, Goldbach pair, generalized Pauli group, qudit commutation structure.
@article{TMF_2012_171_3_a4,
     author = {M. Planat and F. Anselmi and P. Sol\'e},
     title = {Pauli graphs, {Riemann} hypothesis, and {Goldbach} pairs},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {417--429},
     year = {2012},
     volume = {171},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a4/}
}
TY  - JOUR
AU  - M. Planat
AU  - F. Anselmi
AU  - P. Solé
TI  - Pauli graphs, Riemann hypothesis, and Goldbach pairs
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 417
EP  - 429
VL  - 171
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a4/
LA  - ru
ID  - TMF_2012_171_3_a4
ER  - 
%0 Journal Article
%A M. Planat
%A F. Anselmi
%A P. Solé
%T Pauli graphs, Riemann hypothesis, and Goldbach pairs
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 417-429
%V 171
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a4/
%G ru
%F TMF_2012_171_3_a4
M. Planat; F. Anselmi; P. Solé. Pauli graphs, Riemann hypothesis, and Goldbach pairs. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 417-429. http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a4/

[1] M. Planat, J. Phys. A, 44:4 (2010), 045301, 16 pp., arXiv: 1009.3858 | DOI | MR

[2] M. Planat, M. Saniga, Quantum Inf. Comput., 8:1–2 (2008), 127–146 | MR | Zbl

[3] P. Solé, M. Planat, J. Comb. and Numb. Theory, 3:1 (2011), 33–38, arXiv: 1011.1825 | MR | Zbl

[4] T. Oliveira e Silva, Goldbach conjecture verification\par, 2012 {http://www.ieeta.pt/$\sim$tos/goldbach.html}

[5] D. van Golstein Brouwers, J. Bamberg, G. Cairns, Aust. Math. Soc. Gaz., 31:4 (2004), 251–255 | MR | Zbl

[6] M. Planat, P. Solé, S. Omar, J. Phys. A, 44:14 (2011), 145203, 9 pp., arXiv: 1012.4665 | DOI | MR | Zbl

[7] J.-M. Deshouillers, A. Granville, W. Narkiewicz, C. Pomerance, Math. Comp., 61:203 (1993), 209–213 | MR | Zbl

[8] O. Albouy, J. Phys. A, 42:7 (2009), 072001, arXiv: 0809.3220 | DOI | MR | Zbl

[9] H. Havlicek, M. Saniga, J. Phys. A, 41:1 (2008), 015302, 12 pp. | DOI | MR | Zbl

[10] A. Vourdas, C. Banderier, J. Phys. A, 43:4 (2010), 042001, 9 pp. | DOI | MR | Zbl

[11] J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer, New York, 1998 | MR

[12] G. H. Hardy, J. E. Littlewood, Acta Math., 44:1 (1923), 1–70 | DOI | MR | Zbl

[13] H. L. Montgomery, R. C. Vaughan, Multiplicative Number Theory, v. I, Classical Theory, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl

[14] J. Sándor, D. S. Mitrinović, B. Crstici, Handbook of Number Theory. I, Springer, Dordrecht, 2006 | MR | Zbl

[15] J.-L. Nicolas, J. Number Theory, 17:3 (1983), 375–388 | DOI | MR | Zbl

[16] M. Saniga, M. Planat, J. Phys. A, 44:22 (2011), 225305, 12 pp., arXiv: 1102.3281 | DOI | MR | Zbl