Spectrum of the three-particle Schrödinger operator on a one-dimensional lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 387-403 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a system of three arbitrary quantum particles on a one-dimensional lattice interacting pairwise via attractive contact potentials. We prove that the discrete spectrum of the corresponding Schrödinger operator is finite for all values of the total quasimomentum in the case where the masses of two particles are finite. We show that the discrete spectrum of the Schrödinger operator is infinite in the case where the masses of two particles in a three-particle system are infinite.
Keywords: three-particle system on a lattice, Schrödinger operator, essential spectrum, discrete spectrum, compact operator.
@article{TMF_2012_171_3_a2,
     author = {M. \'E. Muminov and N. M. Aliev},
     title = {Spectrum of the~three-particle {Schr\"odinger} operator on a~one-dimensional lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {387--403},
     year = {2012},
     volume = {171},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a2/}
}
TY  - JOUR
AU  - M. É. Muminov
AU  - N. M. Aliev
TI  - Spectrum of the three-particle Schrödinger operator on a one-dimensional lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 387
EP  - 403
VL  - 171
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a2/
LA  - ru
ID  - TMF_2012_171_3_a2
ER  - 
%0 Journal Article
%A M. É. Muminov
%A N. M. Aliev
%T Spectrum of the three-particle Schrödinger operator on a one-dimensional lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 387-403
%V 171
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a2/
%G ru
%F TMF_2012_171_3_a2
M. É. Muminov; N. M. Aliev. Spectrum of the three-particle Schrödinger operator on a one-dimensional lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 387-403. http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a2/

[1] V. N. Efimov, YaF, 12:5 (1970), 1080–1091

[2] R. D. Amado, J. V. Noble, Phys. Rev. D, 5:8 (1972), 1992–2002 | DOI

[3] S. P. Mepkupev, L. D. Faddeev, Kvantovaya teopiya passeyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR | Zbl

[4] D. R. Yafaev, Matem. sb., 94(136):4(8) (1974), 567–593 | DOI | MR | Zbl

[5] Yu. N. Ovchinnikov, I. M. Sigal, Ann. Phys., 123:2 (1979), 274–295 | DOI | MR

[6] H. Tamura, J. Funct. Anal., 95:2 (1991), 433–459 | DOI | MR | Zbl

[7] S. N. Lakaev, TMF, 89:1 (1991), 94–104 | DOI | MR

[8] S. N. Lakaev, M. E. Muminov, TMF, 135:3 (2003), 478–503 | DOI | MR | Zbl

[9] S. N. Lakaev, Zh. I. Abdullaev, Funkts. analiz i ego pril., 33:2 (1999), 84–88 | DOI | MR | Zbl

[10] M. E. Muminov, TMF, 159:2 (2009), 299–317 | DOI | MR | Zbl

[11] S. Albeverio, S. N. Lakaev, Z. I. Muminov, Ann. Henri Poincaré, 5:4 (2004), 743–772 | DOI | MR | Zbl

[12] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo LGU, L., 1980 | MR

[13] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl