Spectrum of the~three-particle Schr\"odinger operator on a~one-dimensional lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 387-403
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a system of three arbitrary quantum particles on a one-dimensional lattice interacting pairwise via attractive contact potentials. We prove that the discrete spectrum of the corresponding Schrödinger operator is finite for all values of the total quasimomentum in the case where the masses of two particles are finite. We show that the discrete spectrum of the Schrödinger operator is infinite in the case where the masses of two particles in a three-particle system are infinite.
Keywords:
three-particle system on a lattice, Schrödinger operator, essential spectrum, discrete spectrum, compact operator.
@article{TMF_2012_171_3_a2,
author = {M. \'E. Muminov and N. M. Aliev},
title = {Spectrum of the~three-particle {Schr\"odinger} operator on a~one-dimensional lattice},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {387--403},
publisher = {mathdoc},
volume = {171},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a2/}
}
TY - JOUR AU - M. É. Muminov AU - N. M. Aliev TI - Spectrum of the~three-particle Schr\"odinger operator on a~one-dimensional lattice JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 387 EP - 403 VL - 171 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a2/ LA - ru ID - TMF_2012_171_3_a2 ER -
%0 Journal Article %A M. É. Muminov %A N. M. Aliev %T Spectrum of the~three-particle Schr\"odinger operator on a~one-dimensional lattice %J Teoretičeskaâ i matematičeskaâ fizika %D 2012 %P 387-403 %V 171 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a2/ %G ru %F TMF_2012_171_3_a2
M. É. Muminov; N. M. Aliev. Spectrum of the~three-particle Schr\"odinger operator on a~one-dimensional lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 387-403. http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a2/