Evaluating the geometric measure of quantum discord
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 519-528 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive analytic formulas for the geometric measure of quantum discord introduced by Dakic, Vedral, and Brukner for pure states and $(2{\times}n)$-dimensional states and establish a general lower bound for arbitrary states.
Keywords: quantum correlation, quantum discord, geometric measure of quantum discord, interlacing theorem for eigenvalues.
@article{TMF_2012_171_3_a12,
     author = {Sh. Luo and Shuangshuang Fu},
     title = {Evaluating the~geometric measure of quantum discord},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {519--528},
     year = {2012},
     volume = {171},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a12/}
}
TY  - JOUR
AU  - Sh. Luo
AU  - Shuangshuang Fu
TI  - Evaluating the geometric measure of quantum discord
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 519
EP  - 528
VL  - 171
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a12/
LA  - ru
ID  - TMF_2012_171_3_a12
ER  - 
%0 Journal Article
%A Sh. Luo
%A Shuangshuang Fu
%T Evaluating the geometric measure of quantum discord
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 519-528
%V 171
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a12/
%G ru
%F TMF_2012_171_3_a12
Sh. Luo; Shuangshuang Fu. Evaluating the geometric measure of quantum discord. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 519-528. http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a12/

[1] V. Vedral, Rev. Modern Phys., 74:1 (2002), 197–234, arXiv: quant-ph/0102094 | DOI | MR | Zbl

[2] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Modern Phys., 81:2 (2009), 865–942, arXiv: quant-ph/0702225 | DOI | MR | Zbl

[3] A. Datta, S. T. Flammia, C. M. Caves, Phys. Rev. A, 72:4 (2005), 042316, 14 pp., arXiv: quant-ph/0505213 | DOI

[4] L. Henderson, V. Vedral, J. Phys. A, 34:35 (2001), 6899–6905, arXiv: quant-ph/0105028 | DOI | MR | Zbl

[5] S. Luo, Phys. Rev. A, 77:2 (2008), 022301, 5 pp. | DOI

[6] K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Phys. Rev. Lett., 104:8 (2010), 080501, 4 pp., arXiv: 0911.5417 | DOI | MR

[7] H. Ollivier, W. H. Zurek, Phys. Rev. Lett., 88:1 (2001), 017901, 4 pp. | DOI | MR

[8] J.-S. Xu, X.-Y. Xu, C.-F. Li, C.-J. Zhang, X.-B. Zou, G.-C. Guo, Nature Commun., 1 (2010), 7 | DOI

[9] S. Luo, S. Fu, Phys. Rev. A, 82:3 (2010), 034302, 4 pp. | DOI | MR | Zbl

[10] M. D. Lang, C. M. Caves, Phys. Rev. Lett., 105:15 (2010), 150501, 4 pp., arXiv: 1006.2775 | DOI

[11] S. Luo, Phys. Rev. A, 77:4 (2008), 042303, 6 pp. | DOI

[12] B. Dakic, V. Vedral, C. Brukner, Phys. Rev. Lett., 105:19 (2010), 190502, 4 pp., arXiv: 1004.0190 | DOI | Zbl

[13] X.-M. Lu, Z. J. Xi, Z. Sun, X. Wang, Quantum Inf. Comput., 10:11–12 (2010), 994–1003 | MR | Zbl

[14] F. Altintas, Opt. Comm., 283:24 (2010), 5264–5268 | DOI

[15] M. S. Byrd, N. Khaneja, Phys. Rev. A, 68:6 (2003), 062322, 13 pp., arXiv: quant-ph/0302024 | DOI | MR

[16] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, 169, Springer, New York, 1997 | DOI | MR