Possibility of reconciling quantum mechanics with general relativity theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 493-510 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the mathematical formalisms of general relativity and of quantum mechanics can be reconciled based on an algebraic approach. In this case, gravity does not need to be quantized.
Keywords: general relativity theory, quantum mechanics, algebraic approach.
@article{TMF_2012_171_3_a10,
     author = {D. A. Slavnov},
     title = {Possibility of reconciling quantum mechanics with general relativity theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {493--510},
     year = {2012},
     volume = {171},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a10/}
}
TY  - JOUR
AU  - D. A. Slavnov
TI  - Possibility of reconciling quantum mechanics with general relativity theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 493
EP  - 510
VL  - 171
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a10/
LA  - ru
ID  - TMF_2012_171_3_a10
ER  - 
%0 Journal Article
%A D. A. Slavnov
%T Possibility of reconciling quantum mechanics with general relativity theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 493-510
%V 171
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a10/
%G ru
%F TMF_2012_171_3_a10
D. A. Slavnov. Possibility of reconciling quantum mechanics with general relativity theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 493-510. http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a10/

[1] Ch. Mizner, K. Torn, Dzh. Uiler, Gravitatsiya, 1, 2, Nauka, M., 1973

[2] I. fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR

[3] D. A. Slavnov, EChAYa, 38:2 (2007), 295–359

[4] D. A. Slavnov, EChAYa, 41:1 (2010), 149–173

[5] D. A. Slavnov, TMF, 142:3 (2005), 510–529 | DOI | MR | Zbl

[6] D. A. Slavnov, TMF, 149:3 (2006), 457–472 | DOI | MR | Zbl

[7] D. A. Slavnov, TMF, 155:2 (2008), 327–343 | DOI | MR | Zbl

[8] Zh. Diksme, $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR | Zbl

[9] S. Kochen, E. P. Specker, J. Math. Mech., 17:1 (1967), 59–87 | DOI | MR | Zbl

[10] A. N. Kolmogorov, Osnovnye ponyatiya teorii veroyatnostei, Nauka, M., 1974 | MR | Zbl

[11] Zh. Neve, Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 | MR | Zbl

[12] M. A. Naimark, Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[13] Zh. Emkh, Algebraicheskie metody v statisticheskoi mekhanike i kvantovoi teorii polya, Mir, M., 1976 | Zbl

[14] E. Kartan, Rimanova geometriya v ortogonalnom repere, Izd-vo MGU, M., 1960 | MR | Zbl

[15] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 2, Teoriya polya, Fizmatlit, M., 2006 | MR | Zbl

[16] P. A. M. Dirak, Obschaya teoriya otnositelnosti, Atomizdat, M., 1978 | MR | Zbl

[17] N. Birrel, P. Devis, Kvantovannye polya v iskrivlennom prostranstve-vremeni, Mir, M., 1984 | MR