The Schlesinger system and isomonodromic deformations of bundles with connections on Riemann surfaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 370-386 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a way to represent pairs $(E,\nabla)$, where $E$ is a bundle on a Riemann surface and $\nabla$ is a logarithmic connection in $E$, based on a representation of the surface as the quotient of the exterior of the unit disc. In this representation, we write the local isomonodromic deformation conditions for the pairs $(E,\nabla)$. These conditions are written as a modified Schlesinger system on a Riemann sphere (reduced to the ordinary Schlesinger system in the typical case) supplemented by a certain system of linear equations.
Mots-clés : isomonodromic deformation
Keywords: Riemann surface, Schlesinger system.
@article{TMF_2012_171_3_a1,
     author = {D. V. Artamonov},
     title = {The~Schlesinger system and isomonodromic deformations of bundles with connections on {Riemann} surfaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {370--386},
     year = {2012},
     volume = {171},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a1/}
}
TY  - JOUR
AU  - D. V. Artamonov
TI  - The Schlesinger system and isomonodromic deformations of bundles with connections on Riemann surfaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 370
EP  - 386
VL  - 171
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a1/
LA  - ru
ID  - TMF_2012_171_3_a1
ER  - 
%0 Journal Article
%A D. V. Artamonov
%T The Schlesinger system and isomonodromic deformations of bundles with connections on Riemann surfaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 370-386
%V 171
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a1/
%G ru
%F TMF_2012_171_3_a1
D. V. Artamonov. The Schlesinger system and isomonodromic deformations of bundles with connections on Riemann surfaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 3, pp. 370-386. http://geodesic.mathdoc.fr/item/TMF_2012_171_3_a1/

[1] A. A. Bolibrukh, Obratnye zadachi monodromii v analiticheskoi teorii differentsialnykh uravnenii, MTsNMO, M., 2009

[2] D. Korotkin, N. Manojlović, H. Samtleben, J. Math. Phys., 41:5 (2000), 3125–3141, arXiv: solv-int/9910010 | DOI | MR | Zbl

[3] K. Iwasaki, Pacific J. Math., 155:2 (1992), 319–340 | DOI | MR | Zbl

[4] K. Iwasaki, “Structure of the module space of SL-operators on a Riemann surface and the monodromy preserving deformation”, Meeting on Ordinary Differential Equations in the Complex Domain and Special Functions (Oberwolfach, Germany, 2–8 April, 1989), Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach, 1989, 6–7

[5] I. M. Krichever, Mosc. Math. J., 2:4 (2002), 717–752, arXiv: hep-th/0112096 | MR | Zbl

[6] A. M. Levin, M. A. Olshanetsky, “Hierarchies of isomonodromic deformations and Hitchin systems”, Moscow Seminar in Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 191(43), eds. A. Yu. Morozov et al., AMS, Providence, RI, 1999, 223–262 ; Classical limit of the Knizhnik–Zamolodchikov–Bernard equations as hierarchy of isomonodromic deformations. Free fields approach, arXiv: hep-th/9709207 | MR | Zbl

[7] K. Okamoto, J. Fac. Sci. Univ. Tokyo, 26 (1979), 501–518 | MR | Zbl

[8] D. A. Hejhal, Acta Math., 135:1 (1975), 1–55 | DOI | MR | Zbl

[9] T. Mano, J. Math. Phys., 50:10 (2009), 103501, 21 pp. | DOI | MR | Zbl

[10] Yu. Chernyakov, A. M. Levin, M. Olshanetsky, A. Zotov, J. Phys. A, 39:39 (2006), 12083–12101, arXiv: nlin/0602043 | DOI | MR | Zbl

[11] D. Mamford, “Proektivnye invarianty proektivnykh struktur i ikh primeneniya”: Zh. Dedonne, Dzh. Kerrol, D. Mamford, Geometricheskaya teoriya invariantov, Mir, M., 1974, 259–265 | MR | Zbl

[12] L. Alfors, L. Bers, Prostranstva rimanovykh poverkhnostei i kvazikonformnye otobrazheniya, IL, M., 1961 | MR

[13] H. Röhrl, Bull. Amer. Math. Soc., 68 (1969), 125–166 | DOI | MR

[14] Yu. V. Brezhnev, Mosc. Math. J., 8:2 (2008), 233–271 | MR | Zbl