An~$\hbar$-dependent formulation of the~Kadomtsev--Petviashvili hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 303-311
Voir la notice de l'article provenant de la source Math-Net.Ru
We briefly review a recursive construction of $\hbar$-dependent solutions of the Kadomtsev–Petviashvili hierarchy. We give recurrence relations for the coefficients $X_n$ of an $\hbar$-expansion of the operator $X=X_0+\hbar X_1+\hbar^2X_2+\cdots$ for which the dressing operator $W$ is expressed in the exponential form $W=e^{X/\hbar}$. The wave function $\Psi$ associated with $W$ turns out to have the WKB {(}Wentzel–Kramers–Brillouin{\rm)} form $\Psi=e^{S/\hbar}$, and the coefficients $S_n$ of the $\hbar$-expansion $S=S_0+\hbar S_1+\hbar^2S_2+\cdots$ are also determined by a set of recurrence relations. We use this WKB form to show that the associated tau function has an $\hbar$-expansion of the form $\ln\tau=\hbar^{-2}F_0+ \hbar^{-1}F_1+F_2+\dots$.
Keywords:
$\hbar$-expansion, Riemann–Hilbert problem, recurrence relation.
Mots-clés : quantization
Mots-clés : quantization
@article{TMF_2012_171_2_a9,
author = {K. Takasaki and T. Takebe},
title = {An~$\hbar$-dependent formulation of {the~Kadomtsev--Petviashvili} hierarchy},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {303--311},
publisher = {mathdoc},
volume = {171},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a9/}
}
TY - JOUR AU - K. Takasaki AU - T. Takebe TI - An~$\hbar$-dependent formulation of the~Kadomtsev--Petviashvili hierarchy JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 303 EP - 311 VL - 171 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a9/ LA - ru ID - TMF_2012_171_2_a9 ER -
K. Takasaki; T. Takebe. An~$\hbar$-dependent formulation of the~Kadomtsev--Petviashvili hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 303-311. http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a9/