An $\hbar$-dependent formulation of the Kadomtsev–Petviashvili hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 303-311 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We briefly review a recursive construction of $\hbar$-dependent solutions of the Kadomtsev–Petviashvili hierarchy. We give recurrence relations for the coefficients $X_n$ of an $\hbar$-expansion of the operator $X=X_0+\hbar X_1+\hbar^2X_2+\cdots$ for which the dressing operator $W$ is expressed in the exponential form $W=e^{X/\hbar}$. The wave function $\Psi$ associated with $W$ turns out to have the WKB {(}Wentzel–Kramers–Brillouin{\rm)} form $\Psi=e^{S/\hbar}$, and the coefficients $S_n$ of the $\hbar$-expansion $S=S_0+\hbar S_1+\hbar^2S_2+\cdots$ are also determined by a set of recurrence relations. We use this WKB form to show that the associated tau function has an $\hbar$-expansion of the form $\ln\tau=\hbar^{-2}F_0+ \hbar^{-1}F_1+F_2+\dots$.
Keywords: $\hbar$-expansion, Riemann–Hilbert problem, recurrence relation.
Mots-clés : quantization
@article{TMF_2012_171_2_a9,
     author = {K. Takasaki and T. Takebe},
     title = {An~$\hbar$-dependent formulation of {the~Kadomtsev{\textendash}Petviashvili} hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {303--311},
     year = {2012},
     volume = {171},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a9/}
}
TY  - JOUR
AU  - K. Takasaki
AU  - T. Takebe
TI  - An $\hbar$-dependent formulation of the Kadomtsev–Petviashvili hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 303
EP  - 311
VL  - 171
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a9/
LA  - ru
ID  - TMF_2012_171_2_a9
ER  - 
%0 Journal Article
%A K. Takasaki
%A T. Takebe
%T An $\hbar$-dependent formulation of the Kadomtsev–Petviashvili hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 303-311
%V 171
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a9/
%G ru
%F TMF_2012_171_2_a9
K. Takasaki; T. Takebe. An $\hbar$-dependent formulation of the Kadomtsev–Petviashvili hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 303-311. http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a9/

[1] Y. Kodama, Phys. Lett. A, 129:4 (1988), 223–226 ; Y. Kodama, J. Gibbons, Phys. Lett. A, 135:3 (1989), 167–170 | DOI | MR | DOI | MR

[2] I. M. Krichever, Commun. Math. Phys., 143:2 (1991), 415–426 | DOI | MR

[3] K. Takasaki, T. Takebe, Internat. J. Modern Phys. A, 7:Suppl. 1B (1992), 889–922 | DOI | MR | Zbl

[4] A. Yu. Orlov, E. I. Schulman, Lett. Math. Phys., 12:3 (1986), 171–179 ; A. Yu. Orlov, “Vertex operators, $\overline{\partial}$-problems, symmetries, variational indentities and Hamiltonian formalism for $2+1$ integrable systems”, Plasma Theory and Nonlinear and Turbulent Processes in Physics (Alushta, 1989), eds. A. A. Belavin, A. U. Klimyk, A. B. Zamolodchikov, World Scientific, Singapore, 1988, 116–134 ; P. G. Grinevich, A. Yu. Orlov, “Virasoro action on Riemann surfaces, Grassmannians, $\operatorname{det}\overline{\partial}_j$ and Segal Wilson $\tau$ function,”, Problems of Modern Quantum Field Theory, Springer, Berlin, 1989, 86–106 | DOI | MR | Zbl | MR | DOI | MR | Zbl

[5] T. Aoki, Ann. Inst. Fourier, 36:2 (1986), 143–165 | DOI | MR | Zbl

[6] K. Takasaki, T. Takebe, Rev. Math. Phys., 7:5 (1995), 743–803 | DOI | MR | Zbl

[7] K. Takasaki, T. Takebe, $\hbar$-Expansion of KP hierarchy: Recursive construction of solutions, arXiv: 0912.4867 | MR

[8] P. Schapira, Microdifferential Systems in the Complex Domain, Grundlehren der Mathematischen Wissenschaften, 269, Springer, Berlin, New York, 1985 | DOI | MR | Zbl