Multiplicity function for tensor powers of modules of the $A_n$ algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 283-293 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the decomposition of the $p$th tensor power of the module $L^{\omega_1}$ over the algebra $A_n$ into irreducible modules, $(L^{\omega_1})^{\otimes p}=\sum_{\nu}m(\nu,p)L^{\nu}$. This problem occurs, for example, in finding the spectrum of an invariant Hamiltonian of a spin chain with $p$ nodes. To solve the problem, we propose using the Weyl symmetry properties. For constructing the coefficients $m(\nu,p)$ as functions of $p$, we develop an algorithm applicable to powers of an arbitrary module. We explicitly write an expression for the multiplicities $m(\nu,p)$ in the decomposition of powers of the first fundamental module of $sl(n+1)$. Based on the obtained results, we find new properties of systems of orthogonal polynomials (multivariate Chebyshev polynomials). Our algorithm can also be applied to tensor powers of modules of other simple Lie algebras.
Keywords: Lie algebra representation, tensor power of modules, branching rule.
@article{TMF_2012_171_2_a7,
     author = {P. P. Kulish and V. D. Lyakhovsky and O. V. Postnova},
     title = {Multiplicity function for tensor powers of modules of the~$A_n$ algebra},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {283--293},
     year = {2012},
     volume = {171},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a7/}
}
TY  - JOUR
AU  - P. P. Kulish
AU  - V. D. Lyakhovsky
AU  - O. V. Postnova
TI  - Multiplicity function for tensor powers of modules of the $A_n$ algebra
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 283
EP  - 293
VL  - 171
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a7/
LA  - ru
ID  - TMF_2012_171_2_a7
ER  - 
%0 Journal Article
%A P. P. Kulish
%A V. D. Lyakhovsky
%A O. V. Postnova
%T Multiplicity function for tensor powers of modules of the $A_n$ algebra
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 283-293
%V 171
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a7/
%G ru
%F TMF_2012_171_2_a7
P. P. Kulish; V. D. Lyakhovsky; O. V. Postnova. Multiplicity function for tensor powers of modules of the $A_n$ algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 283-293. http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a7/

[1] P. P. Kulish, N. Manojlović, Z. Nagy, J. Math. Phys., 51:4 (2010), 043516, 15 pp., arXiv: 0910.4036 | DOI | MR | Zbl

[2] S. Kumar, “Tensor product decompositions”, Proceedings of the International Congress of Mathematicians (Hyderabad, India, 2010), v. 3, Invited Lectures, ed. R. Bhatia, Hindustan Book Agency, New Delphi, 2010, 1226–1261 ; Remarks on fermionic formula, arXiv: math/9812022 | MR

[3] A. N. Kirillov, N. Yu. Reshetikhin, J. Math. Sci., 80:3 (1996), 1768–1772 | DOI | MR

[4] M. Kleber, Internat. Math. Res. Notices, 1997:4, 187–201, arXiv: q-alg/9611032 | DOI | MR | Zbl

[5] M. Kleber, Finite dimensional representations of quantum affine algebras, arXiv: math/9809087 | MR

[6] V. Chari, Internat. Math. Res. Notices, 2001:12, 629-654, arXiv: math/0006090 | DOI | MR | Zbl

[7] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Y. Yamada, Remarks on Fermionic formula, arXiv: math/9812022 | MR

[8] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Z. Tsuboi, “Paths, crystals and Fermionic formulae”, MathPhys Odyssey 2001, Progress in Mathematical Physics, 23, eds. M. Kashiwara, T. Miwa, Birkhäuser, Boston, MA, 2002, 205–272, arXiv: math/0102113 | MR | Zbl

[9] S. Naito, D. Sagaki, Commun. Math. Phys., 263:3 (2006), 749–787, arXiv: math/0503287 | DOI | MR | Zbl

[10] A. W. Knapp, Lie Groups Beyond an Introduction, Progress in Mathematics, 140, Birkhäuser, Boston, MA, 2002 | MR | Zbl

[11] M. Ilin, P. Kulish, V. Lyakhovskii, Algebra i analiz, 21:2 (2009), 52–70 | MR | Zbl

[12] A. Klimyk, K. Schmüdgen, Quantum Groups and Their Representations, Texts and Monographs in Physics, Springer, Berlin, 1997 | MR | Zbl

[13] R. J. Beerends, Trans. Amer. Math. Soc., 328:2 (1991), 779–814 | DOI | MR | Zbl