An approach for calculating correlation functions in the six-vertex model with domain wall boundary conditions
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 254-270 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We address the problem of calculating correlation functions in the six-vertex model with domain wall boundary conditions by considering a particular nonlocal correlation function, called the row configuration probability. This correlation function can be used as a building block for computing various (both local and nonlocal) correlation functions in the model. We calculate the row configuration probability using the quantum inverse scattering method, giving the final result in terms of multiple integrals. We also discuss the relation to the emptiness formation probability, another nonlocal correlation function, which was previously computed using similar methods.
Keywords: vertex model, correlation function, domain wall boundary condition, multiple-integral representation, quantum inverse scattering method.
@article{TMF_2012_171_2_a5,
     author = {F. Colomo and A. G. Pronko},
     title = {An~approach for calculating correlation functions in the~six-vertex model with domain wall boundary conditions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {254--270},
     year = {2012},
     volume = {171},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a5/}
}
TY  - JOUR
AU  - F. Colomo
AU  - A. G. Pronko
TI  - An approach for calculating correlation functions in the six-vertex model with domain wall boundary conditions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 254
EP  - 270
VL  - 171
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a5/
LA  - ru
ID  - TMF_2012_171_2_a5
ER  - 
%0 Journal Article
%A F. Colomo
%A A. G. Pronko
%T An approach for calculating correlation functions in the six-vertex model with domain wall boundary conditions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 254-270
%V 171
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a5/
%G ru
%F TMF_2012_171_2_a5
F. Colomo; A. G. Pronko. An approach for calculating correlation functions in the six-vertex model with domain wall boundary conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 254-270. http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a5/

[1] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[2] V. E. Korepin, Commun. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl

[3] A. G. Izergin, Dokl. AN SSSR, 297:2 (1987), 331–334 | MR

[4] A. G. Izergin, D. A. Coker, V. E. Korepin, J. Phys. A, 25:16 (1992), 4315–4334 | DOI | MR | Zbl

[5] F. Colomo, A. G. Pronko, SIAM J. Discrete Math., 24:4 (2010), 1558–1571, arXiv: 0803.2697 | DOI | MR | Zbl

[6] F. Colomo, A. G. Pronko, J. Stat. Phys., 138:4–6 (2010), 662–700, arXiv: 0907.1264 | DOI | MR | Zbl

[7] N. M. Bogoliubov, A. V. Kitaev, M. B. Zvonarev, Phys. Rev. E, 65:2 (2002), 026126, 4 pp., arXiv: cond-mat/0107146 | DOI | MR

[8] N. M. Bogoliubov, A. G. Pronko, M. B. Zvonarev, J. Phys. A, 35:27 (2002), 5525–5541, arXiv: math-ph/0203025 | DOI | MR | Zbl

[9] O. Foda, I. Preston, J. Stat. Mech. Theory Exp., 11 (2004), P11001, 24 pp., arXiv: math-ph/0409067 | DOI | Zbl

[10] F. Colomo, A. G. Pronko, J. Stat. Mech. Theory Exp., 5 (2005), 05010, 21 pp., arXiv: math-ph/0503049 | DOI | MR

[11] F. Colomo, A. G. Pronko, Nucl. Phys. B, 798:3 (2008), 340–362, arXiv: 0712.1524 | DOI | MR | Zbl

[12] K. Motegi, Physica A, 390:20 (2011), 3337–3347, arXiv: 1101.0187 | DOI | MR

[13] P. Di Francesco, N. Reshetikhin, Commun. Math. Phys., 309:1 (2012), 87–121, arXiv: 0908.1630 | DOI | MR | Zbl

[14] I. Fischer, D. Romik, Adv. Math., 222:6 (2009), 2004–2035, arXiv: 0903.5073 | DOI | MR | Zbl

[15] L. A. Takhtadzhyan, L. D. Faddeev, UMN, 34:5(209) (1979), 13–63 | DOI | MR

[16] A. G. Izergin, V. E. Korepin, N. Yu. Reshetikhin, J. Phys. A, 20:14 (1987), 4799–4822 | DOI | MR

[17] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982 | MR | Zbl

[18] N. Kitanine, J.-M. Maillet, V. Terras, Nucl. Phys. B, 554:3 (1999), 647–678, arXiv: math-ph/9907020 | DOI | MR | Zbl

[19] L. Fischer, Adv. Appl. Math., 37:2 (2006), 249–267, arXiv: math/0501102 | DOI | MR | Zbl

[20] G. Szegö, Orthogonal Polinomials, Colloquium Publications, v. XXIII, 4th ed., AMS, Providence, RI, 1975 | MR

[21] P. Zinn-Justin, Phys. Rev. E, 62:3 (2000), 3411–3418, arXiv: math-ph/0005008 | DOI | MR

[22] P. Zinn-Zhyusten, F. Di Franchesko, TMF, 154:3 (2008), 387–408 | DOI | MR | Zbl

[23] D. Zeilberger, Proof of a conjecture of Philippe Di Francesco and Paul Zinn-Justin related to the qKZ equation and to Dave Robbins' two favorite combinatorial objects, 2007 http://www.math.rutgers.edu/<nobr>$\sim$</nobr>zeilberg/mamarim/mamarimhtml/diFrancesco.html

[24] C. A. Tracy, H. Widom, Commun. Math Phys., 279:3 (2008), 815–844 ; Erratum, 304:3 (2011), 875–878, arXiv: 0704.2633 | DOI | MR | Zbl | DOI | Zbl