@article{TMF_2012_171_2_a5,
author = {F. Colomo and A. G. Pronko},
title = {An~approach for calculating correlation functions in the~six-vertex model with domain wall boundary conditions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {254--270},
year = {2012},
volume = {171},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a5/}
}
TY - JOUR AU - F. Colomo AU - A. G. Pronko TI - An approach for calculating correlation functions in the six-vertex model with domain wall boundary conditions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 254 EP - 270 VL - 171 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a5/ LA - ru ID - TMF_2012_171_2_a5 ER -
%0 Journal Article %A F. Colomo %A A. G. Pronko %T An approach for calculating correlation functions in the six-vertex model with domain wall boundary conditions %J Teoretičeskaâ i matematičeskaâ fizika %D 2012 %P 254-270 %V 171 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a5/ %G ru %F TMF_2012_171_2_a5
F. Colomo; A. G. Pronko. An approach for calculating correlation functions in the six-vertex model with domain wall boundary conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 254-270. http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a5/
[1] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[2] V. E. Korepin, Commun. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl
[3] A. G. Izergin, Dokl. AN SSSR, 297:2 (1987), 331–334 | MR
[4] A. G. Izergin, D. A. Coker, V. E. Korepin, J. Phys. A, 25:16 (1992), 4315–4334 | DOI | MR | Zbl
[5] F. Colomo, A. G. Pronko, SIAM J. Discrete Math., 24:4 (2010), 1558–1571, arXiv: 0803.2697 | DOI | MR | Zbl
[6] F. Colomo, A. G. Pronko, J. Stat. Phys., 138:4–6 (2010), 662–700, arXiv: 0907.1264 | DOI | MR | Zbl
[7] N. M. Bogoliubov, A. V. Kitaev, M. B. Zvonarev, Phys. Rev. E, 65:2 (2002), 026126, 4 pp., arXiv: cond-mat/0107146 | DOI | MR
[8] N. M. Bogoliubov, A. G. Pronko, M. B. Zvonarev, J. Phys. A, 35:27 (2002), 5525–5541, arXiv: math-ph/0203025 | DOI | MR | Zbl
[9] O. Foda, I. Preston, J. Stat. Mech. Theory Exp., 11 (2004), P11001, 24 pp., arXiv: math-ph/0409067 | DOI | Zbl
[10] F. Colomo, A. G. Pronko, J. Stat. Mech. Theory Exp., 5 (2005), 05010, 21 pp., arXiv: math-ph/0503049 | DOI | MR
[11] F. Colomo, A. G. Pronko, Nucl. Phys. B, 798:3 (2008), 340–362, arXiv: 0712.1524 | DOI | MR | Zbl
[12] K. Motegi, Physica A, 390:20 (2011), 3337–3347, arXiv: 1101.0187 | DOI | MR
[13] P. Di Francesco, N. Reshetikhin, Commun. Math. Phys., 309:1 (2012), 87–121, arXiv: 0908.1630 | DOI | MR | Zbl
[14] I. Fischer, D. Romik, Adv. Math., 222:6 (2009), 2004–2035, arXiv: 0903.5073 | DOI | MR | Zbl
[15] L. A. Takhtadzhyan, L. D. Faddeev, UMN, 34:5(209) (1979), 13–63 | DOI | MR
[16] A. G. Izergin, V. E. Korepin, N. Yu. Reshetikhin, J. Phys. A, 20:14 (1987), 4799–4822 | DOI | MR
[17] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982 | MR | Zbl
[18] N. Kitanine, J.-M. Maillet, V. Terras, Nucl. Phys. B, 554:3 (1999), 647–678, arXiv: math-ph/9907020 | DOI | MR | Zbl
[19] L. Fischer, Adv. Appl. Math., 37:2 (2006), 249–267, arXiv: math/0501102 | DOI | MR | Zbl
[20] G. Szegö, Orthogonal Polinomials, Colloquium Publications, v. XXIII, 4th ed., AMS, Providence, RI, 1975 | MR
[21] P. Zinn-Justin, Phys. Rev. E, 62:3 (2000), 3411–3418, arXiv: math-ph/0005008 | DOI | MR
[22] P. Zinn-Zhyusten, F. Di Franchesko, TMF, 154:3 (2008), 387–408 | DOI | MR | Zbl
[23] D. Zeilberger, Proof of a conjecture of Philippe Di Francesco and Paul Zinn-Justin related to the qKZ equation and to Dave Robbins' two favorite combinatorial objects, 2007 http://www.math.rutgers.edu/<nobr>$\sim$</nobr>zeilberg/mamarim/mamarimhtml/diFrancesco.html
[24] C. A. Tracy, H. Widom, Commun. Math Phys., 279:3 (2008), 815–844 ; Erratum, 304:3 (2011), 875–878, arXiv: 0704.2633 | DOI | MR | Zbl | DOI | Zbl