Another new goldfish model
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 241-253 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new integrable (indeed, solvable) model of goldfish type is identified, and some of its properties are discussed. Its Newtonian equations of motion read as follows: \begin{align*} \ddot z_n={}&\frac{\dot z_n^2}{z_n}+c_1\frac{\dot z_n}{z_n}+ c_2\dot z_n+c_2c_3z_n+c_1c_2+{} \\[2mm] &{}+\sum_{m=1,m\ne n}^N\frac{(\dot z_n+c_3z_n+c_1)(\dot z_m+c_3z_m+c_1)} {z_m}\cdot\frac{z_n+z_m}{z_n-z_m},\quad n=1,\dots,N, \end{align*} where $c_1$, $c_2$, and $c_3$ are arbitrary constants, $z_n\equiv z_n(t)$ are the $N$ dependent variables, $N$ is an arbitrary positive number $(N>1)$, $t$ is the independent variable {(}“time”{\rm)} and the dots indicate time-differentiations.
Keywords: integrable dynamical systems, solvable dynamical systems, integrable Newtonian many-body problems.
@article{TMF_2012_171_2_a4,
     author = {F. Calogero},
     title = {Another new goldfish model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {241--253},
     year = {2012},
     volume = {171},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a4/}
}
TY  - JOUR
AU  - F. Calogero
TI  - Another new goldfish model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 241
EP  - 253
VL  - 171
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a4/
LA  - ru
ID  - TMF_2012_171_2_a4
ER  - 
%0 Journal Article
%A F. Calogero
%T Another new goldfish model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 241-253
%V 171
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a4/
%G ru
%F TMF_2012_171_2_a4
F. Calogero. Another new goldfish model. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 241-253. http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a4/

[1] F. Calogero, Physica D, 152–153 (2001), 78–84 | DOI | MR | Zbl

[2] S. N. M. Ruijsenaars, H. Schneider, Ann. Phys., 170:2 (1986), 370–405 | DOI | MR | Zbl

[3] F. Calogero, Classical Many-Body Problems Amenable to Exact Treatments, Lecture Notes in Physics. New Series m, 66, Springer, Berlin, 2001 | DOI | MR | Zbl

[4] F. Calogero, Isochronous Systems, Oxford Univ. Press, Oxford, 2008 | MR | Zbl

[5] F. Calogero, J. Nonlinear Math. Phys., 17:3 (2010), 397–414 | DOI | MR | Zbl

[6] F. Kalodzhero, TMF, 167:3 (2011), 364–376 | DOI

[7] F. Calogero, SIGMA, 7 (2011), 082, 35 pp., arXiv: 1108.4492 | DOI | Zbl

[8] D. Gomez-Ullate, M. Sommacal, J. Nonlinear Math. Phys., 12:Suppl. 1 (2005), 351–362 | DOI | MR

[9] S. Ahmed, M. Bruschi, F. Calogero, M. A. Olshanetsky, A. M. Perelomov, Nuovo Cimento B, 49:2 (1979), 173–199 | DOI | MR

[10] G. Szegö, Orthogonal Polynomials, Colloquium Publ., 23, AMS, Providence, RI, 1939 | MR | Zbl