Persistent currents in open spin chains
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 340-352 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonparallel boundary magnetic fields can induce a longitudinal (spin) current in a quantum spin chain. We use functional approaches to formulate the spectral problem for the spin-$1/2$ Heisenberg model subject to a class of integrable boundary conditions in terms of an infinite hierarchy of nonlinear integral equations. From these equations, we compute finite-size corrections to the ground-state energy of the antiferromagnetic chain and the induced spin current for a certain range of boundary parameters.
Keywords: integrable spin chain, boundary field, Bethe ansatz, $Y$ system.
@article{TMF_2012_171_2_a13,
     author = {H. Frahm and J. H. Grelik and A. Seel},
     title = {Persistent currents in open spin chains},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {340--352},
     year = {2012},
     volume = {171},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a13/}
}
TY  - JOUR
AU  - H. Frahm
AU  - J. H. Grelik
AU  - A. Seel
TI  - Persistent currents in open spin chains
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 340
EP  - 352
VL  - 171
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a13/
LA  - ru
ID  - TMF_2012_171_2_a13
ER  - 
%0 Journal Article
%A H. Frahm
%A J. H. Grelik
%A A. Seel
%T Persistent currents in open spin chains
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 340-352
%V 171
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a13/
%G ru
%F TMF_2012_171_2_a13
H. Frahm; J. H. Grelik; A. Seel. Persistent currents in open spin chains. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 340-352. http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a13/

[1] F. C. Alcaraz, M. N. Barber, M. T. Batchelor, Ann. Phys., 182:2 (1988), 280–343 | DOI | MR | Zbl

[2] J. Cao, Y. Wang, Nucl. Phys. B, 792:3 (2008), 284–299 | DOI | MR | Zbl

[3] J. Cao, H.-Q. Lin, K.-J. Shi, Y. Wang, Nucl. Phys. B, 663:3 (2003), 487–519 | DOI | MR | Zbl

[4] R. I. Nepomechie, J. Phys. A, 37:2 (2004), 433–440, arXiv: hep-th/0304092 | DOI | MR | Zbl

[5] W.-L. Yang, R. I. Nepomechie, Y.-Z. Zhang, Phys. Lett. B, 633:4–5 (2006), 664–670, arXiv: hep-th/0511134 | DOI | MR | Zbl

[6] P. Baseilhac, K. Koizumi, J. Statist. Mech., 9 (2007), 09006, 27 pp., arXiv: hep-th/0703106 | DOI | MR

[7] W. Galleas, Nucl. Phys. B, 790:3 (2008), 524–542, arXiv: 0708.0009 | DOI | MR | Zbl

[8] H. Frahm, A. Seel, T. Wirth, Nucl. Phys. B, 802:3 (2008), 351–367, arXiv: 0803.1776 | DOI | MR | Zbl

[9] H. Frahm, J. H. Grelik, A. Seel, T. Wirth, J. Phys. A, 44:1 (2011), 015001, 19 pp., arXiv: 1009.1081 | DOI | MR | Zbl

[10] E. K. Sklyanin, J. Phys. A, 21:10 (1988), 2375–2389 | DOI | MR | Zbl

[11] H. J. de Vega, A. González Ruiz, J. Phys. A, 26:12 (1993), L519–L524 | DOI | MR | Zbl

[12] S. Ghoshal, A. Zamolodchikov, Internat. J. Modern Phys. A, 9:21 (1994), 3841–3885, arXiv: hep-th/9306002 | DOI | MR | Zbl

[13] P. P. Kulish, “Yang–Baxter equation and reflection equations in integrable models”, Low-Dimensional Models in Statistical Physics and Quantum Field Theory (Schladming, Austria, March 4–11, 1995), Lecture Notes in Physics, 469, eds. H. Grosse, L. Pittner, Springer, Berlin, 1996, 125–144, arXiv: hep-th/9507070 | DOI | MR | Zbl

[14] E. K. Sklyanin, “Quantum inverse scattering method. Selected Topics”, Quantum Group and Quantum Integrable Systems (Tianjin, China, April 5–13, 1991), Nankai Lectures in Mathematical Physics, ed. M. L. Ge, World Scientific, Singapore, 1992, 63–97, arXiv: hep-th/9211111 | MR

[15] A. Kuniba, T. Nakanishi, J. Suzuki, Internat. J. Modern Phys. A, 9:30 (1994), 5215–5266, arXiv: hep-th/9309137 | DOI | MR | Zbl

[16] M. Takahashi, Thermodynamics of One-Dimensional Solvable Models, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[17] J. de Gier, F. H. L. Essler, J. Statist. Mech., 12 (2006), P12011, 44 pp. | DOI

[18] R. P. Feynman, Phys. Rev., 56:4 (1939), 340–343 | DOI | Zbl

[19] H. Hellman, Einführung in die Quantenchemie, Deuticke, Leipzig, 1937

[20] L. Amico, H. Frahm, A. Osterloh, T. Wirth, Nucl. Phys. B, 839:3 (2010), 604–626, arXiv: 1005.5681 | DOI | MR | Zbl

[21] J. Suzuki, J. Phys. A, 32:12 (1999), 2341–2359, arXiv: cond-mat/9807076 | DOI | MR | Zbl

[22] A. Klümper, J. R. Reyes Martínez, C. Scheeren, M. Shiroishi, J. Stat. Phys., 102:3–4 (2000), 937–951, arXiv: cond-mat/0004379 | MR