Spectra of the quantized action variables of the compactified Ruijsenaars–Schneider system
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 326-339 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a simple derivation of the spectra of the action variables of the quantized compactified Ruijsenaars–Schneider system. We obtain the spectra by combining Kähler quantization with the identification of the classical action variables as a standard toric moment map on a complex projective space. The result is consistent with the Schrödinger quantization of the system previously developed by van Diejen and Vinet.
Keywords: compactified Ruijsenaars–Schneider system
Mots-clés : action variable, quantization.
@article{TMF_2012_171_2_a12,
     author = {L. Feher and C. Klimchik},
     title = {Spectra of the~quantized action variables of the~compactified {Ruijsenaars{\textendash}Schneider} system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {326--339},
     year = {2012},
     volume = {171},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a12/}
}
TY  - JOUR
AU  - L. Feher
AU  - C. Klimchik
TI  - Spectra of the quantized action variables of the compactified Ruijsenaars–Schneider system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 326
EP  - 339
VL  - 171
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a12/
LA  - ru
ID  - TMF_2012_171_2_a12
ER  - 
%0 Journal Article
%A L. Feher
%A C. Klimchik
%T Spectra of the quantized action variables of the compactified Ruijsenaars–Schneider system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 326-339
%V 171
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a12/
%G ru
%F TMF_2012_171_2_a12
L. Feher; C. Klimchik. Spectra of the quantized action variables of the compactified Ruijsenaars–Schneider system. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 326-339. http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a12/

[1] S. N. M. Ruijsenaars, Publ. Res. Inst. Math. Sci., 31:2 (1995), 247–353 | DOI | MR

[2] J. F. van Diejen, L. Vinet, Commun. Math. Phys., 197:1 (1998), 33–74, arXiv: math/9709221 | DOI | MR | Zbl

[3] L. Fehér, C. Klimčík, Nucl. Phys. B, 860:3 (2012), 464–515, arXiv: 1101.1759 | DOI | MR | Zbl

[4] A. Alekseev, A. Malkin, E. Meinrenken, J. Diff. Geom., 48:3 (1998), 445–495, arXiv: dg-ga/9707021 | DOI | MR | Zbl

[5] A. Gorsky, N. Nekrasov, Nucl. Phys. B, 436:3 (1995), 582–608, arXiv: hep-th/9401017 | DOI | MR | Zbl

[6] J.-H. Lu, “Momentum mappings and reduction of Poisson actions”, Symplectic Geometry, Groupoids, and Integrable systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., 20, eds. P. Dazord, A. Weinstein, Springer, New York, 1991, 209–226 | DOI | MR

[7] L. Fehér, C. Klimčík, Commun. Math. Phys., 301 (2011), 55–104, arXiv: 0906.4198 | DOI | MR | Zbl

[8] M. Audin, A. Cannas da Silva, E. Lerman, Symplectic Geometry of Integrable Hamiltonian Systems, Advanced Courses in Mathematics, Birkhäuser, Basel, 2003 | MR | Zbl

[9] T. Delzant, Bull. Soc. Math. France, 116:3 (1988), 315–339 | DOI | MR | Zbl

[10] M. D. Hamilton, “The quantization of a toric manifold is given by the integer lattice points in the moment polytope”, Toric Topology, Contemp. Math., 460, eds. M. Harada, Y. Karshon, M. Masuda, T. Panov, AMS, Providence, RI, 2008, 131–140, arXiv: 0708.2710 | DOI | MR | Zbl