Mots-clés : action variable, quantization.
@article{TMF_2012_171_2_a12,
author = {L. Feher and C. Klimchik},
title = {Spectra of the~quantized action variables of the~compactified {Ruijsenaars{\textendash}Schneider} system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {326--339},
year = {2012},
volume = {171},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a12/}
}
TY - JOUR AU - L. Feher AU - C. Klimchik TI - Spectra of the quantized action variables of the compactified Ruijsenaars–Schneider system JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 326 EP - 339 VL - 171 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a12/ LA - ru ID - TMF_2012_171_2_a12 ER -
L. Feher; C. Klimchik. Spectra of the quantized action variables of the compactified Ruijsenaars–Schneider system. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 326-339. http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a12/
[1] S. N. M. Ruijsenaars, Publ. Res. Inst. Math. Sci., 31:2 (1995), 247–353 | DOI | MR
[2] J. F. van Diejen, L. Vinet, Commun. Math. Phys., 197:1 (1998), 33–74, arXiv: math/9709221 | DOI | MR | Zbl
[3] L. Fehér, C. Klimčík, Nucl. Phys. B, 860:3 (2012), 464–515, arXiv: 1101.1759 | DOI | MR | Zbl
[4] A. Alekseev, A. Malkin, E. Meinrenken, J. Diff. Geom., 48:3 (1998), 445–495, arXiv: dg-ga/9707021 | DOI | MR | Zbl
[5] A. Gorsky, N. Nekrasov, Nucl. Phys. B, 436:3 (1995), 582–608, arXiv: hep-th/9401017 | DOI | MR | Zbl
[6] J.-H. Lu, “Momentum mappings and reduction of Poisson actions”, Symplectic Geometry, Groupoids, and Integrable systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., 20, eds. P. Dazord, A. Weinstein, Springer, New York, 1991, 209–226 | DOI | MR
[7] L. Fehér, C. Klimčík, Commun. Math. Phys., 301 (2011), 55–104, arXiv: 0906.4198 | DOI | MR | Zbl
[8] M. Audin, A. Cannas da Silva, E. Lerman, Symplectic Geometry of Integrable Hamiltonian Systems, Advanced Courses in Mathematics, Birkhäuser, Basel, 2003 | MR | Zbl
[9] T. Delzant, Bull. Soc. Math. France, 116:3 (1988), 315–339 | DOI | MR | Zbl
[10] M. D. Hamilton, “The quantization of a toric manifold is given by the integer lattice points in the moment polytope”, Toric Topology, Contemp. Math., 460, eds. M. Harada, Y. Karshon, M. Masuda, T. Panov, AMS, Providence, RI, 2008, 131–140, arXiv: 0708.2710 | DOI | MR | Zbl