Nonstandard Lagrangian tori and pseudotoric structures
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 321-325 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that exotic Lagrangian tori constructed by Chekanov and Schlenk can be obtained for a large class of toric manifolds. For this, we translate their original construction into the language of pseudotoric structures. As an example, we construct exotic Lagrangian tori on a del Pezzo surface of degree six.
Keywords: Lagrangian torus, exotic torus, pseudotoric structure.
Mots-clés : Chekanov torus
@article{TMF_2012_171_2_a11,
     author = {N. A. Tyurin},
     title = {Nonstandard {Lagrangian} tori and pseudotoric structures},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {321--325},
     year = {2012},
     volume = {171},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a11/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Nonstandard Lagrangian tori and pseudotoric structures
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 321
EP  - 325
VL  - 171
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a11/
LA  - ru
ID  - TMF_2012_171_2_a11
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Nonstandard Lagrangian tori and pseudotoric structures
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 321-325
%V 171
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a11/
%G ru
%F TMF_2012_171_2_a11
N. A. Tyurin. Nonstandard Lagrangian tori and pseudotoric structures. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 321-325. http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a11/

[1] Yu. Chekanov, F. Schlenk, Electron. Res. Announc. Math. Sci., 17 (2010), 104–121 | MR | Zbl

[2] Yu. V. Chekanov, Math. Z., 223:4 (1996), 547–559 | DOI | MR | Zbl

[3] Ya. Eliashberg, L. Polterovich, “The problem of Lagrangian knots in four-manifolds”, Geometric Topology: 1993 Georgia International Topology Conference (University of Georgia, Athens, GA, August 2–13, 1993), AMS-IP Studies in Advanced Mathematics Series, ed. W. H. Kazez, AMS, Cambridge, MA, 1993, 323–327 | MR

[4] S. A. Belev, N. A. Tyurin, Matem. zametki, 87:1 (2010), 48–59 | DOI | MR | Zbl

[5] N. A. Tyurin, TMF, 162:3 (2010), 307–333 | DOI | MR | Zbl

[6] N. A. Tyurin, UMN, 66:1(397) (2011), 185–186 | DOI | MR | Zbl

[7] N. N. Nekhoroshev, Funkts. analiz i ego pril., 28:2 (1994), 67–69 | DOI | MR | Zbl

[8] D. Auroux, J. Gökova Geom. Topol. GGT, 1 (2007), 51–91 | MR | Zbl