Keywords: integrable system, flag space.
@article{TMF_2012_171_2_a10,
author = {D. V. Talalaev},
title = {Quantum generalized {Toda} system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {312--320},
year = {2012},
volume = {171},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a10/}
}
D. V. Talalaev. Quantum generalized Toda system. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 312-320. http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a10/
[1] P. Deift, L. C. Li, T. Nanda, C. Tomei, Commun. Pure Appl. Math., 39:2 (1986), 183–232 | DOI | MR | Zbl
[2] I. Krichever, K. L. Vaninsky, “The periodic and open Toda lattice”, Mirror symmetry IV (Montréal, Canada, 2000), AMS/IP Stud. Adv. Math., 33, eds. E. D'Hoker et al., AMS, Providence, RI, 2002, 139–158, arXiv: hep-th/0010184 | MR | Zbl
[3] D. V. Talalaev, Funkts. analiz i ego pril., 40:1 (2006), 86–91 | DOI | MR | Zbl
[4] M. Gekhtman, M. Shapiro, Commun. Pure Appl. Math., 52:1 (1999), 53–84, arXiv: solv-int/9704011 | DOI | MR | Zbl
[5] Yu. Chernyakov, A. Sorin, Involutive families of integrals of the full symmetric Toda system on a generic orbit, preprint (to appear)
[6] A. Chervov, D. Talalaev, Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence, arXiv: hep-th/0604128
[7] M. Finkelberg, L. Rybnikov, Quantization of Drinfeld Zastava, arXiv: 1009.0676