Quantum generalized Toda system
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 312-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a "spectral curve" for the generalized Toda system, which allows efficiently finding its quantization. In turn, the quantization is realized using the technique of the quantum characteristic polynomial for the Gaudin system and an appropriate Alder–Kostant–Symes reduction. We also discuss some relations of this result to the recent consideration of the Drinfeld Zastava space, the monopole space, and corresponding symmetries of the Borel Yangian.
Mots-clés : quantization
Keywords: integrable system, flag space.
@article{TMF_2012_171_2_a10,
     author = {D. V. Talalaev},
     title = {Quantum generalized {Toda} system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {312--320},
     year = {2012},
     volume = {171},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a10/}
}
TY  - JOUR
AU  - D. V. Talalaev
TI  - Quantum generalized Toda system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 312
EP  - 320
VL  - 171
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a10/
LA  - ru
ID  - TMF_2012_171_2_a10
ER  - 
%0 Journal Article
%A D. V. Talalaev
%T Quantum generalized Toda system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 312-320
%V 171
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a10/
%G ru
%F TMF_2012_171_2_a10
D. V. Talalaev. Quantum generalized Toda system. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 312-320. http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a10/

[1] P. Deift, L. C. Li, T. Nanda, C. Tomei, Commun. Pure Appl. Math., 39:2 (1986), 183–232 | DOI | MR | Zbl

[2] I. Krichever, K. L. Vaninsky, “The periodic and open Toda lattice”, Mirror symmetry IV (Montréal, Canada, 2000), AMS/IP Stud. Adv. Math., 33, eds. E. D'Hoker et al., AMS, Providence, RI, 2002, 139–158, arXiv: hep-th/0010184 | MR | Zbl

[3] D. V. Talalaev, Funkts. analiz i ego pril., 40:1 (2006), 86–91 | DOI | MR | Zbl

[4] M. Gekhtman, M. Shapiro, Commun. Pure Appl. Math., 52:1 (1999), 53–84, arXiv: solv-int/9704011 | DOI | MR | Zbl

[5] Yu. Chernyakov, A. Sorin, Involutive families of integrals of the full symmetric Toda system on a generic orbit, preprint (to appear)

[6] A. Chervov, D. Talalaev, Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence, arXiv: hep-th/0604128

[7] M. Finkelberg, L. Rybnikov, Quantization of Drinfeld Zastava, arXiv: 1009.0676