New integrable systems as a limit of the elliptic $SL(N,\mathbb C)$ top
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 196-207 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the scaling limit of an elliptic top. This limit is a combination of a scaling of the elliptic top variables, an infinite shift of the spectral parameter, and the trigonometric limit. We give general necessary constraints on the scaling of the variables and examples of such a degeneracy. A certain subclass of limit systems is integrable in the Liouville sense, which can also be shown directly.
Keywords: integrable system, Inozemtsev limit, integrability test, elliptic top.
@article{TMF_2012_171_2_a1,
     author = {S. Arthamonov},
     title = {New integrable systems as a~limit of the~elliptic $SL(N,\mathbb C)$ top},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {196--207},
     year = {2012},
     volume = {171},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a1/}
}
TY  - JOUR
AU  - S. Arthamonov
TI  - New integrable systems as a limit of the elliptic $SL(N,\mathbb C)$ top
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 196
EP  - 207
VL  - 171
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a1/
LA  - ru
ID  - TMF_2012_171_2_a1
ER  - 
%0 Journal Article
%A S. Arthamonov
%T New integrable systems as a limit of the elliptic $SL(N,\mathbb C)$ top
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 196-207
%V 171
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a1/
%G ru
%F TMF_2012_171_2_a1
S. Arthamonov. New integrable systems as a limit of the elliptic $SL(N,\mathbb C)$ top. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 196-207. http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a1/

[1] V. I. Inozemtsev, Commun. Math. Phys., 121:4 (1989), 629–638 | DOI | MR | Zbl

[2] A. M. Levin, M. A. Olshanetsky, A. Zotov, Commun. Math. Phys., 236:1 (2003), 93–133, arXiv: nlin/0110045 | DOI | MR | Zbl

[3] G. Aminov, S. Arthamonov, J. Phys. A, 44:7 (2011), 075201, 34 pp. | DOI | MR | Zbl

[4] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR | Zbl

[5] A. Veil, Ellipticheskie funktsii po Eizenshteinu i Kronekeru, Mir, M., 1978 | MR | Zbl

[6] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, “Algebra Li i laksovy uravneniya so spektralnym parametrom na ellipticheskii krivoi”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki, Zap. nauchn. sem. LOMI, 150, Izd-vo “Nauka”, Leningrad. otd., L., 1986, 104–118 | DOI | MR

[7] A. A. Belavin, Nucl. Phys. B, 180:2 (1981), 189–200 | DOI | MR | Zbl

[8] A. A. Belavin, V. G. Drinfeld, Funkts. analiz i ego pril., 16:3 (1982), 1–29 | DOI | MR | Zbl

[9] P. P. Kulish, E. K. Sklyanin, “O resheniyakh uravneniya Yanga–Bakstera”, Differentsialnaya geometriya, gruppy Li i mekhanika. III, Zap. nauchn. sem. LOMI, 95, Izd-vo “Nauka”, Leningrad. otd., L., 1980, 129–160 | DOI | MR | Zbl

[10] M. A. Olshanetsky, A. M. Perelomov, Invent. Math., 37:2 (1976), 93–108 | DOI | MR | Zbl

[11] J. Gibbons, T. Hermsen, Physica D, 11:3 (1984), 337–348 | DOI | MR | Zbl

[12] L.-C. Li, P. Xu, C. R. Acad. Sci., Paris, Ser. Math., 331:1 (2000), 55–60 | DOI | MR | Zbl

[13] L.-C. Li, P. Xu, Commun. Math. Phys., 231:2 (2002), 257–286, arXiv: math/0105162 | DOI | MR | Zbl

[14] A. V. Zotov, Yu. B. Chernyakov,, TMF, 129:2 (2001), 258–277 | DOI | MR | Zbl

[15] S. P. Khastgir, R. Sasaki, K. Takasaki, Progr. Theor. Phys., 102:4 (1999), 749–776, arXiv: hep-th/9907102 | DOI | MR

[16] E. D'Hoker, H. D. Phong, Regul. Chaotic Dynam., 3:4 (1998), 27–39 | DOI | MR | Zbl

[17] E. Billey, J. Avan, O. Babelon, Phys. Lett. A, 188:3 (1994), 263–271, arXiv: hep-th/9401117 | DOI | MR | Zbl

[18] I. Krichever, O. Babelon, E. Billey, M. Talon, “Spin generalization of the Calogero–Moser system and the matrix KP equation”, Topics in Topology and Mathematical Physics, Amer. Math. Soc. Transl., 170(27), ed. S. P. Novikov, 1995, 83–119 | MR | Zbl

[19] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR | Zbl