New integrable systems as a~limit of the~elliptic $SL(N,\mathbb C)$ top
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 196-207

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the scaling limit of an elliptic top. This limit is a combination of a scaling of the elliptic top variables, an infinite shift of the spectral parameter, and the trigonometric limit. We give general necessary constraints on the scaling of the variables and examples of such a degeneracy. A certain subclass of limit systems is integrable in the Liouville sense, which can also be shown directly.
Keywords: integrable system, Inozemtsev limit, integrability test, elliptic top.
@article{TMF_2012_171_2_a1,
     author = {S. Arthamonov},
     title = {New integrable systems as a~limit of the~elliptic $SL(N,\mathbb C)$ top},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {196--207},
     publisher = {mathdoc},
     volume = {171},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a1/}
}
TY  - JOUR
AU  - S. Arthamonov
TI  - New integrable systems as a~limit of the~elliptic $SL(N,\mathbb C)$ top
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 196
EP  - 207
VL  - 171
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a1/
LA  - ru
ID  - TMF_2012_171_2_a1
ER  - 
%0 Journal Article
%A S. Arthamonov
%T New integrable systems as a~limit of the~elliptic $SL(N,\mathbb C)$ top
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 196-207
%V 171
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a1/
%G ru
%F TMF_2012_171_2_a1
S. Arthamonov. New integrable systems as a~limit of the~elliptic $SL(N,\mathbb C)$ top. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 196-207. http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a1/