Limit relation between Toda chains and the~elliptic $SL(N,\mathbb C)$ top
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 179-195

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a limit relation between the elliptic $SL(N,\mathbb C)$ top and Toda chains. We show that in the case of the nonautonomous $SL(2,\mathbb C)$ top, whose equations of motion are related to the Painlevé VI equation, it turns out to be possible to modify the previously proposed procedure and in the limit obtain the nonautonomous Toda chain, whose equations of motion are equivalent to a particular case of the Painlevé III equation. We obtain the limit of the Lax pair for the elliptic $SL(2,\mathbb C)$ top, which allows representing the equations of motion of the nonautonomous Toda chain as the equation for isomonodromic deformations.
Keywords: integrable system, nonautonomous system, Painlevé equation, Inozemtsev limit, topological structure of phase space.
@article{TMF_2012_171_2_a0,
     author = {G. Aminov},
     title = {Limit relation between {Toda} chains and the~elliptic $SL(N,\mathbb C)$ top},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--195},
     publisher = {mathdoc},
     volume = {171},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a0/}
}
TY  - JOUR
AU  - G. Aminov
TI  - Limit relation between Toda chains and the~elliptic $SL(N,\mathbb C)$ top
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 179
EP  - 195
VL  - 171
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a0/
LA  - ru
ID  - TMF_2012_171_2_a0
ER  - 
%0 Journal Article
%A G. Aminov
%T Limit relation between Toda chains and the~elliptic $SL(N,\mathbb C)$ top
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 179-195
%V 171
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a0/
%G ru
%F TMF_2012_171_2_a0
G. Aminov. Limit relation between Toda chains and the~elliptic $SL(N,\mathbb C)$ top. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 2, pp. 179-195. http://geodesic.mathdoc.fr/item/TMF_2012_171_2_a0/