Resolvents and Seiberg--Witten representation for a~Gaussian $\beta$-ensemble
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 96-115
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The exact free energy of a matrix model always satisfies the Seiberg–Witten equations on a complex curve defined by singularities of the semiclassical resolvent. The role of the Seiberg–Witten differential is played by the exact one-point resolvent in this case. We show that these properties are preserved in the generalization of matrix models to $\beta$-ensembles. But because the integrability and Harer–Zagier topological recursion are still unavailable for $\beta$-ensembles, we must rely on the ordinary Alexandrov–Mironov–Morozov/Eynard–Orantin recursion to evaluate the first terms of the genus expansion. We restrict our consideration to the Gaussian model.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
matrix model, integrability, Seiberg–Witten theory.
Mots-clés : $\beta$-ensemble
                    
                  
                
                
                Mots-clés : $\beta$-ensemble
@article{TMF_2012_171_1_a8,
     author = {A. D. Mironov and A. Yu. Morozov and A. V. Popolitov and Sh. R. Shakirov},
     title = {Resolvents and {Seiberg--Witten} representation for {a~Gaussian} $\beta$-ensemble},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {96--115},
     publisher = {mathdoc},
     volume = {171},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a8/}
}
                      
                      
                    TY - JOUR AU - A. D. Mironov AU - A. Yu. Morozov AU - A. V. Popolitov AU - Sh. R. Shakirov TI - Resolvents and Seiberg--Witten representation for a~Gaussian $\beta$-ensemble JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 96 EP - 115 VL - 171 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a8/ LA - ru ID - TMF_2012_171_1_a8 ER -
%0 Journal Article %A A. D. Mironov %A A. Yu. Morozov %A A. V. Popolitov %A Sh. R. Shakirov %T Resolvents and Seiberg--Witten representation for a~Gaussian $\beta$-ensemble %J Teoretičeskaâ i matematičeskaâ fizika %D 2012 %P 96-115 %V 171 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a8/ %G ru %F TMF_2012_171_1_a8
A. D. Mironov; A. Yu. Morozov; A. V. Popolitov; Sh. R. Shakirov. Resolvents and Seiberg--Witten representation for a~Gaussian $\beta$-ensemble. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 96-115. http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a8/
