A map between the Coulomb and the harmonic oscillator systems in a higher-dimensional space
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 79-86
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present an extended transformation method for mapping between higher-dimensional spaces. We report solutions of the Schrödinger equation for the Green's function in the form of bound states and scattering states. We discuss the normalizability of the bound-state solution of a generated exactly solvable potential.
Keywords: extended transformation, Schrödinger Green's function equation, exactly solvable potential.
@article{TMF_2012_171_1_a6,
     author = {N. Saikia and S. A. S. Ahmed},
     title = {A~map between {the~Coulomb} and the~harmonic oscillator systems in a~higher-dimensional space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {79--86},
     year = {2012},
     volume = {171},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a6/}
}
TY  - JOUR
AU  - N. Saikia
AU  - S. A. S. Ahmed
TI  - A map between the Coulomb and the harmonic oscillator systems in a higher-dimensional space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 79
EP  - 86
VL  - 171
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a6/
LA  - ru
ID  - TMF_2012_171_1_a6
ER  - 
%0 Journal Article
%A N. Saikia
%A S. A. S. Ahmed
%T A map between the Coulomb and the harmonic oscillator systems in a higher-dimensional space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 79-86
%V 171
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a6/
%G ru
%F TMF_2012_171_1_a6
N. Saikia; S. A. S. Ahmed. A map between the Coulomb and the harmonic oscillator systems in a higher-dimensional space. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 79-86. http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a6/

[1] S. A. S. Ahmed, B. C. Borah, D. Sharma, Eur. Phys. J. D, 17:1 (2001), 5–11 | DOI

[2] S. A. S. Ahmed, B. C. Borah, Indian J. Phys. B, 76:2 (2001), 205–208

[3] S. A. S. Ahmed, L. Buragohain, Latin.-Amer. J. Phys. Educ., 3:3 (2009), 573–577

[4] S. A. S. Ahmed, L. Buragohain, N. Saikia, Internat. J. Pure Appl. Phys., 4:3 (2008), 233–250

[5] N. Saikia, S. A. S. Ahmed, Physica Scr., 81:3 (2010), 035006, 6 pp. | DOI | MR | Zbl

[6] S. A. S. Ahmed, L. Buragohain, Physica Scr., 80:2 (2009), 025004, 6 pp. | DOI | Zbl

[7] N. Saikia, S. A. S. Ahmed, Physica Scr., 83:3 (2011), 035006, 8 pp. | DOI | Zbl

[8] L. Buragohain, S. A. S. Ahmed, Lat. Am. J. Phys. Educ., 3:3 (2009), 573–577

[9] S. A. S. Ahmed, L. Buragohain, EJTP, 7:23 (2010), 145–154

[10] S. S. Vassan, S. Seetharaman, K. Raghunathan, Pramana, 38:1 (1992), 1–10 | DOI

[11] F. Steiner, Phys. Lett. A, 106:8 (1984), 356–362 | DOI | MR

[12] J. D. Louck, J. Molecular Spectroscopy, 4:1–6 (1960), 298–333 | DOI