Discrete spectrum of Hamiltonians of some quantum system models
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 44-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the discrete spectrum of the Hamiltonian $H_0[Z_1]$ of relative motion of an $n$-particle quantum system $Z_1$ consisting of mutually identical particles of two types. The interaction of the first-type particles is described by a short-range potential $W_1$, the interaction of the second-type particles is described by a long-range potential $W_2$, and the interaction of particles of different types is described by a negative long-range potential $W_3$. Under some assumptions about the potentials $W_2$ and $W_3$, we demonstrate that the discrete spectrum of the operator $H_0[Z_1]$ is infinite both with and without taking the permutation symmetry into account.
Keywords: multiparticle Hamiltonian, discrete spectrum, permutation symmetry, mathematical quantum system model.
@article{TMF_2012_171_1_a4,
     author = {G. M. Zhislin},
     title = {Discrete spectrum of {Hamiltonians} of some quantum system models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {44--64},
     year = {2012},
     volume = {171},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a4/}
}
TY  - JOUR
AU  - G. M. Zhislin
TI  - Discrete spectrum of Hamiltonians of some quantum system models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 44
EP  - 64
VL  - 171
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a4/
LA  - ru
ID  - TMF_2012_171_1_a4
ER  - 
%0 Journal Article
%A G. M. Zhislin
%T Discrete spectrum of Hamiltonians of some quantum system models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 44-64
%V 171
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a4/
%G ru
%F TMF_2012_171_1_a4
G. M. Zhislin. Discrete spectrum of Hamiltonians of some quantum system models. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 44-64. http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a4/

[1] A. G. Sigalov, I. M. Sigal, TMF, 5:1 (1970), 73–93 | DOI | MR

[2] G. M. Zhislin, Izv. AN SSSR. Ser. matem., 33:3 (1969), 590–649 | DOI | MR | Zbl

[3] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl

[4] G. M. Zhislin, Dokl. AN SSSR, 128:2 (1959), 231–234 | Zbl

[5] E. Vigner, Teoriya grupp i ee prilozheniya k kvantovomekhanicheskoi teorii atomnykh spektrov, IL, M., 1961 | MR | Zbl