Bi-Hamiltonian ordinary differential equations with matrix variables
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 26-32

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a special class of Poisson brackets related to systems of ordinary differential equations with matrix variables. We investigate general properties of such brackets, present an example of a compatible pair of quadratic and linear brackets, and find the corresponding hierarchy of integrable models, which generalizes the two-component Manakov matrix system to the case of an arbitrary number of matrices.
Keywords: integrable ordinary differential equation with matrix unknowns, bi-Hamiltonian formalism, Manakov model.
@article{TMF_2012_171_1_a2,
     author = {A. V. Odesskii and V. N. Rubtsov and V. V. Sokolov},
     title = {Bi-Hamiltonian ordinary differential equations with matrix variables},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {26--32},
     publisher = {mathdoc},
     volume = {171},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a2/}
}
TY  - JOUR
AU  - A. V. Odesskii
AU  - V. N. Rubtsov
AU  - V. V. Sokolov
TI  - Bi-Hamiltonian ordinary differential equations with matrix variables
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 26
EP  - 32
VL  - 171
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a2/
LA  - ru
ID  - TMF_2012_171_1_a2
ER  - 
%0 Journal Article
%A A. V. Odesskii
%A V. N. Rubtsov
%A V. V. Sokolov
%T Bi-Hamiltonian ordinary differential equations with matrix variables
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 26-32
%V 171
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a2/
%G ru
%F TMF_2012_171_1_a2
A. V. Odesskii; V. N. Rubtsov; V. V. Sokolov. Bi-Hamiltonian ordinary differential equations with matrix variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 26-32. http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a2/