@article{TMF_2012_171_1_a2,
author = {A. V. Odesskii and V. N. Rubtsov and V. V. Sokolov},
title = {Bi-Hamiltonian ordinary differential equations with matrix variables},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {26--32},
year = {2012},
volume = {171},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a2/}
}
TY - JOUR AU - A. V. Odesskii AU - V. N. Rubtsov AU - V. V. Sokolov TI - Bi-Hamiltonian ordinary differential equations with matrix variables JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 26 EP - 32 VL - 171 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a2/ LA - ru ID - TMF_2012_171_1_a2 ER -
A. V. Odesskii; V. N. Rubtsov; V. V. Sokolov. Bi-Hamiltonian ordinary differential equations with matrix variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 26-32. http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a2/
[1] S. V. Manakov, Funkts. analiz i ego pril., 10:4 (1976), 93–94 | DOI | MR | Zbl
[2] F. Magri, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl
[3] F. Magri, P. Casati, G. Falqui, M. Pedroni, “Eight lectures on Integrable Systems”, Integrability of Nonlinear Systems, Lecture Notes in Physics, 495, eds. Y. Kosmann-Schwarzbach, K. M. Tamizhmani, B. Grammaticos, Springer, Heidelberg, 1997, 256–296 | DOI | MR | Zbl
[4] I. M. Gelfand, I. Zakharevich, Selecta Math. (N.S.), 6:2 (2000), 131–183 | DOI | MR | Zbl
[5] A. V. Mikhailov, V. V. Sokolov, Comm. Math. Phys., 211:1 (2000), 231–251 | DOI | MR | Zbl
[6] A. G. Reyman, M. A. Semenov-Tian-Shansky, Phys. Lett. A, 130:8–9 (1988), 456–460 | DOI | MR
[7] A. V. Odesskii, V. V. Sokolov, J. Phys. A, 39:40 (2006), 12447–12456 | DOI | MR | Zbl
[8] A. Pichereau, G. Van de Weyer, J. Algebra, 319:5 (2008), 2166–2208 | DOI | MR | Zbl
[9] M. Aguiar, J. Algebra, 244:2 (2001), 492–532 | DOI | MR | Zbl
[10] T. Schedler, Math. Res. Lett., 10:2–3 (2003), 301–321 | DOI | MR | Zbl
[11] A. R. Elashvili, Funkts. analiz i ego pril., 16:4 (1982), 94–95 | DOI | MR | Zbl
[12] M. Kontsevich, “Formal (non)commutative symplectic geometry”, The Gelfand Mathematical Seminars, 1990–1992, eds. L. Corwin, I. Gelfand, J. Lepowsky, Birkhäuser, Boston, MA, 1993, 173–187 | DOI | MR | Zbl