Bi-Hamiltonian ordinary differential equations with matrix variables
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 26-32
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a special class of Poisson brackets related to systems of ordinary differential equations with matrix variables. We investigate general properties of such brackets, present an example of a compatible pair of quadratic and linear brackets, and find the corresponding hierarchy of integrable models, which generalizes the two-component Manakov matrix system to the case of an arbitrary number of matrices.
Keywords: integrable ordinary differential equation with matrix unknowns, bi-Hamiltonian formalism, Manakov model.
@article{TMF_2012_171_1_a2,
     author = {A. V. Odesskii and V. N. Rubtsov and V. V. Sokolov},
     title = {Bi-Hamiltonian ordinary differential equations with matrix variables},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {26--32},
     year = {2012},
     volume = {171},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a2/}
}
TY  - JOUR
AU  - A. V. Odesskii
AU  - V. N. Rubtsov
AU  - V. V. Sokolov
TI  - Bi-Hamiltonian ordinary differential equations with matrix variables
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 26
EP  - 32
VL  - 171
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a2/
LA  - ru
ID  - TMF_2012_171_1_a2
ER  - 
%0 Journal Article
%A A. V. Odesskii
%A V. N. Rubtsov
%A V. V. Sokolov
%T Bi-Hamiltonian ordinary differential equations with matrix variables
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 26-32
%V 171
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a2/
%G ru
%F TMF_2012_171_1_a2
A. V. Odesskii; V. N. Rubtsov; V. V. Sokolov. Bi-Hamiltonian ordinary differential equations with matrix variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 26-32. http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a2/

[1] S. V. Manakov, Funkts. analiz i ego pril., 10:4 (1976), 93–94 | DOI | MR | Zbl

[2] F. Magri, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[3] F. Magri, P. Casati, G. Falqui, M. Pedroni, “Eight lectures on Integrable Systems”, Integrability of Nonlinear Systems, Lecture Notes in Physics, 495, eds. Y. Kosmann-Schwarzbach, K. M. Tamizhmani, B. Grammaticos, Springer, Heidelberg, 1997, 256–296 | DOI | MR | Zbl

[4] I. M. Gelfand, I. Zakharevich, Selecta Math. (N.S.), 6:2 (2000), 131–183 | DOI | MR | Zbl

[5] A. V. Mikhailov, V. V. Sokolov, Comm. Math. Phys., 211:1 (2000), 231–251 | DOI | MR | Zbl

[6] A. G. Reyman, M. A. Semenov-Tian-Shansky, Phys. Lett. A, 130:8–9 (1988), 456–460 | DOI | MR

[7] A. V. Odesskii, V. V. Sokolov, J. Phys. A, 39:40 (2006), 12447–12456 | DOI | MR | Zbl

[8] A. Pichereau, G. Van de Weyer, J. Algebra, 319:5 (2008), 2166–2208 | DOI | MR | Zbl

[9] M. Aguiar, J. Algebra, 244:2 (2001), 492–532 | DOI | MR | Zbl

[10] T. Schedler, Math. Res. Lett., 10:2–3 (2003), 301–321 | DOI | MR | Zbl

[11] A. R. Elashvili, Funkts. analiz i ego pril., 16:4 (1982), 94–95 | DOI | MR | Zbl

[12] M. Kontsevich, “Formal (non)commutative symplectic geometry”, The Gelfand Mathematical Seminars, 1990–1992, eds. L. Corwin, I. Gelfand, J. Lepowsky, Birkhäuser, Boston, MA, 1993, 173–187 | DOI | MR | Zbl