Can quantum effects due to a massless conformally coupled field avoid gravitational singularities?
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 162-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using quantum corrections from massless fields conformally coupled to gravity, we study the possibility of avoiding singularities that appear in the flat Friedmann–Robertson–Walker model. We assume that the universe contains a barotropic perfect fluid with the state equation $p=\omega\rho$, where $p$ is the pressure and $\rho$ is the energy density. We study the dynamics of the model for all values of the parameter $\omega$ and also for all values of the conformal anomaly coefficients $\alpha$ and $\beta$. We show that singularities can be avoided only in the case where $\alpha>0$ and $\beta<0$. To obtain an expanding Friedmann universe at late times with $\omega>-1$ (only a one-parameter family of solutions, but no a general solution, has this behavior at late times), the initial conditions of the nonsingular solutions at early times must be chosen very exactly. These nonsingular solutions consist of a general solution (a two-parameter family) exiting the contracting de Sitter phase and a one-parameter family exiting the contracting Friedmann phase. On the other hand, for $\omega<-1$ (a phantom field), the problem of avoiding singularities is more involved because if we consider an expanding Friedmann phase at early times, then in addition to fine-tuning the initial conditions, we must also fine-tune the parameters $\alpha$ and $\beta$ to obtain a behavior without future singularities: only a one-parameter family of solutions follows a contracting Friedmann phase at late times, and only a particular solution behaves like a contracting de Sitter universe. The other solutions have future singularities.
Keywords: cosmological singularity avoidance, semiclassical approximation, conformal anomaly.
@article{TMF_2012_171_1_a14,
     author = {J. Haro},
     title = {Can quantum effects due to a~massless conformally coupled field avoid gravitational singularities?},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {162--176},
     year = {2012},
     volume = {171},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a14/}
}
TY  - JOUR
AU  - J. Haro
TI  - Can quantum effects due to a massless conformally coupled field avoid gravitational singularities?
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 162
EP  - 176
VL  - 171
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a14/
LA  - ru
ID  - TMF_2012_171_1_a14
ER  - 
%0 Journal Article
%A J. Haro
%T Can quantum effects due to a massless conformally coupled field avoid gravitational singularities?
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 162-176
%V 171
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a14/
%G ru
%F TMF_2012_171_1_a14
J. Haro. Can quantum effects due to a massless conformally coupled field avoid gravitational singularities?. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 162-176. http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a14/

[1] C. Molina-París, M. Visser, Phys. Lett. B, 455:1–4 (1999), 90–95, arXiv: ; S. W. Hawking, R. Penrose, The Nature of Space and Time, The Isaac Newton Institute Series of Lectures, Princeton Univ. Press, Princeton, NJ, 1996 ; S. W. Hawking, G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, 1, Cambridge Univ. Press, Cambridge, 1973 gr-qc/9810023 | DOI | MR | Zbl | MR | Zbl | MR | Zbl

[2] P. C. W. Davies, Phys. Lett. B, 68:4 (1977), 402–404 | DOI

[3] A. A. Starobinsky, Phys. Lett. B, 91:1 (1980), 99–102 | DOI

[4] T. Azuma, S. Wada, Prog. Theor. Phys., 75 (1986), 845–861 | DOI | MR

[5] S. Wada, Phys. Rev. D, 31:10 (1985), 2470–2475 | DOI | MR

[6] R. R. Caldwell, M. Kamionkowski, N. N. Weinberg, Phys. Rev. Lett., 91:7 (2003), 071301, 4 pp., arXiv: astro-ph/0302506 | DOI

[7] S. Nojiri, S. Odintsov, S. Tsujikawa, Phys. Rev. D, 71:6 (2005), 063005, 21 pp. | DOI | MR

[8] A. O. Barvinsky, A. Yu. Kamenshchik, Phys. Rev. D, 74:12 (2006), 121502, 5 pp. | DOI

[9] A. O. Barvinsky, A. Yu. Kamenshchik, JCAP, 09 (2006), 014, arXiv: hep-th/0605132 | DOI

[10] R. M. Wald, Phys. Rev. D, 17:6 (1978), 1477–1484 | DOI

[11] S. W. Hawking, T. Hertog, H. S. Reall, Phys. Rev. D, 63:8 (2001), 083504, 23 pp., arXiv: hep-th/0010232 | DOI | MR

[12] A. Vilenkin, Phys. Rev. D, 32:10 (1985), 2511–2521 | DOI | MR

[13] M. V. Fischetti, J. B. Hartle, B. L. Hu, Phys. Rev. D, 20:8 (1979), 1757–1771 | DOI | MR

[14] P. Anderson, Phys. Rev. D, 28:2 (1983), 271–285 | DOI | MR

[15] H. Calderón, W. A. Hiscock, Class. Quantum Grav., 22:4 (2005), L23–L26 | DOI | MR | Zbl

[16] A. Ashtekar, T. Pawlowski, P. Singh, Phys. Rev. D, 73:12 (2006), 124038, 33 pp., arXiv: gr-qc/0604013 | DOI | MR

[17] S. Sami, P. Singh, S. Tsujikawa, Phys. Rev. D, 74:4 (2006), 043514, 6 pp., arXiv: gr-qc/0605113 | DOI | MR

[18] J. Haro, E. Elizalde, J. Phys. A, 42:20 (2009), 202002, 15 pp. | DOI | MR | Zbl

[19] E. Elizalde, J. Haro, J. Phys. A, 42:47 (2009), 472001, 9 pp. | DOI | MR | Zbl