Spectral dependence of the~localization degree in the~one-dimensional disordered Lloyd model
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 124-134
Voir la notice de l'article provenant de la source Math-Net.Ru
We calculate the Anderson criterion and the spectral dependence of the degree of localization in the first nonvanishing approximation with respect to disorder for one-dimensional diagonally disordered models with a site energy distribution function that has no finite even moments higher than the zeroth. For this class of models (for which the usual perturbation theory is inapplicable), we show that the perturbation theory can be consistently constructed for the joint statistics of advanced and retarded Green's functions. Calculations for the Lloyd model show that the Anderson criterion in this case is a linear (not quadratic as usual) function of the disorder degree. We illustrate the calculations with computer experiments.
Keywords:
Anderson localization, one-dimensional disordered system, Green's function.
@article{TMF_2012_171_1_a10,
author = {G. G. Kozlov},
title = {Spectral dependence of the~localization degree in the~one-dimensional disordered {Lloyd} model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {124--134},
publisher = {mathdoc},
volume = {171},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a10/}
}
TY - JOUR AU - G. G. Kozlov TI - Spectral dependence of the~localization degree in the~one-dimensional disordered Lloyd model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 124 EP - 134 VL - 171 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a10/ LA - ru ID - TMF_2012_171_1_a10 ER -
G. G. Kozlov. Spectral dependence of the~localization degree in the~one-dimensional disordered Lloyd model. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 124-134. http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a10/