Differential operators commuting in the~principal part
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 18-25
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider commuting differential operators with two independent variables of general form and obtain general necessary commutativity conditions for low-order operators. We show that these conditions allow classifying commuting pairs of operators whose coefficients are linear functions of the independent variables.
Keywords:
commutative ring of differential operators, Schur's formula
Mots-clés : classification.
Mots-clés : classification.
@article{TMF_2012_171_1_a1,
author = {R. A. Gabiev and A. B. Shabat},
title = {Differential operators commuting in the~principal part},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {18--25},
publisher = {mathdoc},
volume = {171},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a1/}
}
R. A. Gabiev; A. B. Shabat. Differential operators commuting in the~principal part. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 18-25. http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a1/