Differential operators commuting in the principal part
Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 18-25
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider commuting differential operators with two independent variables of general form and obtain general necessary commutativity conditions for low-order operators. We show that these conditions allow classifying commuting pairs of operators whose coefficients are linear functions of the independent variables.
Keywords:
commutative ring of differential operators, Schur's formula
Mots-clés : classification.
Mots-clés : classification.
@article{TMF_2012_171_1_a1,
author = {R. A. Gabiev and A. B. Shabat},
title = {Differential operators commuting in the~principal part},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {18--25},
year = {2012},
volume = {171},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a1/}
}
R. A. Gabiev; A. B. Shabat. Differential operators commuting in the principal part. Teoretičeskaâ i matematičeskaâ fizika, Tome 171 (2012) no. 1, pp. 18-25. http://geodesic.mathdoc.fr/item/TMF_2012_171_1_a1/
[1] I. Schur, Sitzungsber. Berl. Math. Gen., 4 (1905), 2–8 | Zbl
[2] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, UMN, 42:4(256) (1987), 3–53 | MR | Zbl
[3] J. Hietarinta, Phys. Lett. A, 246:1–2 (1998), 97–104 | DOI | MR | Zbl
[4] V. G. Marikhin, TMF, 168:2 (2011), 219–226 | DOI | MR | Zbl
[5] A. B. Shabat, Lektsii po teorii solitonov, KChGU, Karachaevsk, 2008
[6] P. Appell, Sur les fonctions hypergéométriques de plusieurs variables, les polynomes d'Hermite et autres fonctions sphériques dans l'hyperespace, Mémorial des sciences mathématiques, Gauthier-Villars, Paris, 1925 | Zbl
[7] A. Gonzalez-Lopez, N. Kamran, P. Olver, J. Phys. A, 24:17 (1991), 3995–4008 | DOI | MR | Zbl