Critical indices as a consequence of Wiener quantization of thermodynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 3, pp. 457-467 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a family of perfect gases depending on the critical value of the compressibility factor $Z$ for pure gases. We show that the critical indices of actual simple liquids, like many other thermodynamic effects, easily and naturally follow from the concept of Wiener quantization of modern thermodynamics.
Keywords: tunnel canonical operator, critical index, quantization of thermodynamics.
@article{TMF_2012_170_3_a9,
     author = {V. P. Maslov},
     title = {Critical indices as a~consequence of {Wiener} quantization of thermodynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {457--467},
     year = {2012},
     volume = {170},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a9/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Critical indices as a consequence of Wiener quantization of thermodynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 457
EP  - 467
VL  - 170
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a9/
LA  - ru
ID  - TMF_2012_170_3_a9
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Critical indices as a consequence of Wiener quantization of thermodynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 457-467
%V 170
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a9/
%G ru
%F TMF_2012_170_3_a9
V. P. Maslov. Critical indices as a consequence of Wiener quantization of thermodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 3, pp. 457-467. http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a9/

[1] V. P. Maslov, TMF, 165:3 (2010), 543–567 | DOI | Zbl

[2] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 5, Statisticheskaya fizika, Nauka, M., 1976 | MR | Zbl

[3] E. M. Apfel'baum, V. S. Vorob'ev, Russ. J. Math. Phys., 18:1 (2011), 26–32 | DOI | MR | Zbl

[4] V. P. Maslov, TMF, 101:3 (1994), 433–441 | DOI | MR | Zbl

[5] V. P. Maslov, Kvantovanie termodinamiki i ultravtorichnoe kvantovanie, IKI, M., 2001

[6] V. P. Maslov, Russ. J. Math. Phys., 18:4 (2011), 440–464 | DOI | MR | Zbl

[7] B. Van der Pol, Kh. Bremmer, Operatsionnoe ischislenie na osnove dvustoronnego preobrazovaniya Laplasa, IL, M., 1952 | MR | Zbl

[8] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika (nerelyativistskaya teoriya), Nauka, M., 1974 | MR | Zbl

[9] V. P. Maslov, UMN, 38:6(234) (1983), 3–36 | DOI | MR | Zbl

[10] M. S. Green, “Introduction”, Proceedings of the Conference on Phenomena in the Neighborhood of Critical Points, NBS Misc. Publ., 273, eds. M. S. Green, J. V. Sengers, NBS, Washington, 1966, ix–xi

[11] D. Yu. Ivanov, Vestn. SibGUTI, 3 (2009), 94–104

[12] V. P. Maslov, Russ. J. Math. Phys., 18:4 (2011), 440–464, arXiv: 1111.6106 | DOI | MR | Zbl

[13] R. Balesku, Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, 1, Mir, M., 1978 | MR | Zbl

[14] D. Yu. Ivanov, Kriticheskoe povedenie neidealizirovannykh sistem, Fizmatlit, M., 2003 | Zbl

[15] W. Wagner, N. Kurzeja, B. Pieperbeck, Fluid Phase Equilibria, 79 (1992), 151–174 | DOI

[16] N. Kurzeja, Th. Tielkes, W. Wagner, Int. J. Thermophys., 20:2 (1999), 531–562 | DOI

[17] V. P. Maslov, Math. Notes, 90:3–4 (2011), 533–547 | DOI | Zbl