Existence and analyticity of bound states of a two-particle Schrödinger operator on a lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 3, pp. 393-408 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the two-particle discrete Schrödinger operator $H_\mu(K)$ corresponding to a system of two arbitrary particles on a $d$-dimensional lattice $\mathbb Z^d$, $d\ge3$, interacting via a pair contact repulsive potential with a coupling constant $\mu>0$ ($K\in\mathbb T^d$ is the quasimomentum of two particles). We find that the upper (right) edge of the essential spectrum can be either a virtual level (for $d=3,4)$ or an eigenvalue (for $d\ge5)$ of $H_\mu(K)$. We show that there exists a unique eigenvalue located to the right of the essential spectrum, depending on the coupling constant $\mu$ and the two-particle quasimomentum $K$. We prove the analyticity of the corresponding eigenstate and the analyticity of the eigenvalue and the eigenstate as functions of the quasimomentum $K\in\mathbb T^d$ in the domain of their existence.
Keywords: discrete Schrödinger operator, two-particle system, Hamiltonian, contact repulsive potential, virtual level, eigenvalue, lattice.
@article{TMF_2012_170_3_a5,
     author = {S. N. Lakaev and S. S. Ulashov},
     title = {Existence and analyticity of bound states of a~two-particle {Schr\"odinger} operator on a~lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {393--408},
     year = {2012},
     volume = {170},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a5/}
}
TY  - JOUR
AU  - S. N. Lakaev
AU  - S. S. Ulashov
TI  - Existence and analyticity of bound states of a two-particle Schrödinger operator on a lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 393
EP  - 408
VL  - 170
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a5/
LA  - ru
ID  - TMF_2012_170_3_a5
ER  - 
%0 Journal Article
%A S. N. Lakaev
%A S. S. Ulashov
%T Existence and analyticity of bound states of a two-particle Schrödinger operator on a lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 393-408
%V 170
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a5/
%G ru
%F TMF_2012_170_3_a5
S. N. Lakaev; S. S. Ulashov. Existence and analyticity of bound states of a two-particle Schrödinger operator on a lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 3, pp. 393-408. http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a5/

[1] A. I. Mogilner, “Hamiltonians in solid-state physics as multiparticle discrete Schrodinger operators: problems and results”, Many Particle Hamiltonians: Spectra and Scattering, Advances in Soviet Mathematics, 5, ed. R. A. Minlos, AMS, Providence, RI, 1991, 139–194 | MR | Zbl

[2] D. C. Mattis, Rev. Mod. Phys., 58:2 (1986), 361–379 | DOI | MR

[3] S. Albeverio, S. N. Lakaev, K. A. Makarov, Z. I. Muminov, Commun. Math. Phys., 262:1 (2006), 91–115, arXiv: math-ph/0501013 | DOI | MR | Zbl

[4] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, Ann. Inst. H. Poincaré A (N. S.), 37:1 (1982), 1–28 | MR | Zbl

[5] S. N. Lakaev, Funkts. analiz i ego pril., 27:3 (1993), 15–28 | DOI | MR | Zbl

[6] J. Rauch, J. Funct. Anal., 35:3 (1980), 304–315 | DOI | MR | Zbl

[7] H. Tamura, Nagoya Math. J., 130 (1993), 55–83 | DOI | MR | Zbl

[8] D. R. Yafaev, Matem. sb., 94(136):4(8) (1974), 567–593 | DOI | MR | Zbl

[9] S. Albeverio, R. Høegh-Krohn, T. T. Wu, Phys. Lett. A, 83:3 (1971), 105–109 | DOI | MR

[10] Yu. N. Ovchinnikov, I. M. Sigal, Ann. Physics, 123:2 (1989), 274–295 | DOI | MR

[11] A. V. Sobolev, Commun. Math. Phys., 156:1 (1993), 101–126 | DOI | MR | Zbl

[12] S. Albeverio, S. N. Lakaev, Z. I. Muminov, Ann. Henri Poincaré, 5:4 (2004), 743–772 | MR | Zbl

[13] K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hesker Denschlag, K. J. Daley, A. Kantian, H. P. Büchler, P. Zoller, Nature, 441:7095 (2006), 853–856, arXiv: cond-mat/0605196 | DOI

[14] P. A. F. da Veiga, L. Ioriatti, M. O'Carroll, Phys. Rev. E, 66:1 (2002), 016130, 9 pp. | DOI | MR

[15] V. Bach, P. W. De Siqueira, S. N. Lakaev, Bounds on the discrete spectrum of lattice Schrödinger operators, Preprint mp-arc 10-143, 2010, 45 pp.