@article{TMF_2012_170_3_a5,
author = {S. N. Lakaev and S. S. Ulashov},
title = {Existence and analyticity of bound states of a~two-particle {Schr\"odinger} operator on a~lattice},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {393--408},
year = {2012},
volume = {170},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a5/}
}
TY - JOUR AU - S. N. Lakaev AU - S. S. Ulashov TI - Existence and analyticity of bound states of a two-particle Schrödinger operator on a lattice JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 393 EP - 408 VL - 170 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a5/ LA - ru ID - TMF_2012_170_3_a5 ER -
%0 Journal Article %A S. N. Lakaev %A S. S. Ulashov %T Existence and analyticity of bound states of a two-particle Schrödinger operator on a lattice %J Teoretičeskaâ i matematičeskaâ fizika %D 2012 %P 393-408 %V 170 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a5/ %G ru %F TMF_2012_170_3_a5
S. N. Lakaev; S. S. Ulashov. Existence and analyticity of bound states of a two-particle Schrödinger operator on a lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 3, pp. 393-408. http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a5/
[1] A. I. Mogilner, “Hamiltonians in solid-state physics as multiparticle discrete Schrodinger operators: problems and results”, Many Particle Hamiltonians: Spectra and Scattering, Advances in Soviet Mathematics, 5, ed. R. A. Minlos, AMS, Providence, RI, 1991, 139–194 | MR | Zbl
[2] D. C. Mattis, Rev. Mod. Phys., 58:2 (1986), 361–379 | DOI | MR
[3] S. Albeverio, S. N. Lakaev, K. A. Makarov, Z. I. Muminov, Commun. Math. Phys., 262:1 (2006), 91–115, arXiv: math-ph/0501013 | DOI | MR | Zbl
[4] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, Ann. Inst. H. Poincaré A (N. S.), 37:1 (1982), 1–28 | MR | Zbl
[5] S. N. Lakaev, Funkts. analiz i ego pril., 27:3 (1993), 15–28 | DOI | MR | Zbl
[6] J. Rauch, J. Funct. Anal., 35:3 (1980), 304–315 | DOI | MR | Zbl
[7] H. Tamura, Nagoya Math. J., 130 (1993), 55–83 | DOI | MR | Zbl
[8] D. R. Yafaev, Matem. sb., 94(136):4(8) (1974), 567–593 | DOI | MR | Zbl
[9] S. Albeverio, R. Høegh-Krohn, T. T. Wu, Phys. Lett. A, 83:3 (1971), 105–109 | DOI | MR
[10] Yu. N. Ovchinnikov, I. M. Sigal, Ann. Physics, 123:2 (1989), 274–295 | DOI | MR
[11] A. V. Sobolev, Commun. Math. Phys., 156:1 (1993), 101–126 | DOI | MR | Zbl
[12] S. Albeverio, S. N. Lakaev, Z. I. Muminov, Ann. Henri Poincaré, 5:4 (2004), 743–772 | MR | Zbl
[13] K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hesker Denschlag, K. J. Daley, A. Kantian, H. P. Büchler, P. Zoller, Nature, 441:7095 (2006), 853–856, arXiv: cond-mat/0605196 | DOI
[14] P. A. F. da Veiga, L. Ioriatti, M. O'Carroll, Phys. Rev. E, 66:1 (2002), 016130, 9 pp. | DOI | MR
[15] V. Bach, P. W. De Siqueira, S. N. Lakaev, Bounds on the discrete spectrum of lattice Schrödinger operators, Preprint mp-arc 10-143, 2010, 45 pp.