@article{TMF_2012_170_3_a3,
author = {Shou-fu Tian and Hong-qing Zhang},
title = {Super {Riemann} theta function periodic wave solutions and rational characteristics for a~supersymmetric {KdV{\textendash}Burgers} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {350--380},
year = {2012},
volume = {170},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a3/}
}
TY - JOUR AU - Shou-fu Tian AU - Hong-qing Zhang TI - Super Riemann theta function periodic wave solutions and rational characteristics for a supersymmetric KdV–Burgers equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 350 EP - 380 VL - 170 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a3/ LA - ru ID - TMF_2012_170_3_a3 ER -
%0 Journal Article %A Shou-fu Tian %A Hong-qing Zhang %T Super Riemann theta function periodic wave solutions and rational characteristics for a supersymmetric KdV–Burgers equation %J Teoretičeskaâ i matematičeskaâ fizika %D 2012 %P 350-380 %V 170 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a3/ %G ru %F TMF_2012_170_3_a3
Shou-fu Tian; Hong-qing Zhang. Super Riemann theta function periodic wave solutions and rational characteristics for a supersymmetric KdV–Burgers equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 3, pp. 350-380. http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a3/
[1] S. P. Novikov, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | DOI | MR | Zbl
[2] B. A. Dubrovin, Funkts. analiz i ego pril., 9:3 (1975), 41–51 | DOI | MR | Zbl
[3] A. R. Its, V. B. Matveev, Funkts. analiz i ego pril., 9:1 (1975), 69–70 | DOI | MR | Zbl
[4] P. D. Lax, Commun. Pure Appl. Math., 28:1 (1975), 141–188 | DOI | MR | Zbl
[5] H. P. McKean, P. van Moerbeke, Invent. Math., 30:3 (1975), 217–274 | DOI | MR | Zbl
[6] E. D. Belokolos, A. I. Bobenko, V. Z. Enolskii, A. R. Its, V. B. Matveev, Algebro-Geometrical Approach to Nonlinear Integrable Equations, Springer Series in Nonlinear Dynamics, Springer, Berlin, 1994 | Zbl
[7] F. Gesztesy, H. Holden, Soliton Equations and Their Algebro-Geometric Solutions, Cambridge Studies in Advanced Mathematics, 79, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[8] J. S. Geronimo, F. Gesztesy, H. Holden, Commun. Math. Phys., 258:1 (2005), 149–177 | DOI | MR | Zbl
[9] Z. Qiao, Commun. Math. Phys., 239:1–2 (2003), 309–341 | DOI | MR | Zbl
[10] R. Zhou, J. Math. Phys., 38:5 (1997), 2535–2346 | DOI | MR
[11] C. Cao, Y. Wu, X. Geng, J. Math. Phys., 40:8 (1999), 3948–3970 | DOI | MR | Zbl
[12] X. Geng, Y. Wu, C. Cao, J. Phys. A, 32:20 (1999), 3733–3742 | DOI | MR | Zbl
[13] J. Atkinson, F. Nijhoff, Commun. Math. Phys., 299:2 (2010), 283–304, arXiv: 0911.0458 | DOI | MR | Zbl
[14] Y. C. Hon, E. G. Fan, J. Math. Phys., 46:3 (2005), 032701, 21 pp. | DOI | MR | Zbl
[15] R. Hirota, The Direct Methods in Soliton Theory, Cambridge Tracts in Mathematics, 155, Cambridge, Cambridge Univ. Press, 2004 | MR | Zbl
[16] R. Hirota, X.-B. Hu, X.-Y. Tang, J. Math. Anal. Appl., 288:1 (2003), 326–348 | DOI | MR | Zbl
[17] X.-B. Hu, P. A. Clarkson, J. Phys. A, 28:17 (1995), 5009–5016 | DOI | MR | Zbl
[18] X.-B. Hu, C.-X. Li, J. J. C. Nimmo, G.-F. Yu, J. Phys. A, 38:1 (2005), 195–204 | DOI | MR | Zbl
[19] D. Zhang, J. Phys. Soc. Jpn., 71:11 (2002), 2649–2656 | DOI | MR | Zbl
[20] A. Nakamura, J. Phys. Soc. Jpn., 47:5 (1979), 1701–1705 | DOI | MR | Zbl
[21] A. Nakamura, J. Phys. Soc. Jpn., 48:4 (1980), 1365–1370 | DOI | MR | Zbl
[22] R. Hirota, M. Ito, J. Phys. Soc. Jpn., 50:1 (1981), 338–342 | DOI | MR
[23] H. H. Dai, E. G. Fan, X. G. Geng, Periodic wave solutions of nonlinear equations by Hirota's bilinear method, arXiv: nlin/0602015
[24] Y. Zhang, L. Ye, Y. Lv, H. Zhao, J. Phys. A, 40:21 (2007), 5539–5549 | DOI | MR | Zbl
[25] Y. C. Hon, E. Fan, Z. Qin, Mod. Phys. Lett. B, 22:8 (2008), 547–553 | DOI | Zbl
[26] E. Fan, Y. C. Hon, Phys. Rev. E, 78:3 (2008), 036607, 13 pp. | DOI | MR
[27] E. Fan, J. Phys. A, 42:9 (2009), 095206, 11 pp. | DOI | MR | Zbl
[28] E. G. Fan, Y. C. Hon, Stud. Appl. Math., 125:4 (2010), 343–371 | DOI | MR | Zbl
[29] W.-X. Ma, R. Zhou, L. Gao, Mod. Phys. Lett. A, 24:21 (2009), 1677–1688 | DOI | MR | Zbl
[30] S.-F. Tian, H.-Q. Zhang, J. Math. Anal. Appl., 371:2 (2010), 585–608 | DOI | MR | Zbl
[31] S.-F. Tian, H.-Q. Zhang, Commun. Nonlinear Sci. Numer. Simul., 16:1 (2011), 173–186 | DOI | MR | Zbl
[32] P. Ramond, Phys. Rev. D, 3:10 (1971), 2415–2418 | DOI | MR
[33] J. Wess, B. Zumino, Nucl. Phys. B, 70:1 (1974), 39–50 | DOI | MR
[34] F. A. Berezin, Introduction to Superanalysis, Mathematical Physics and Applied Mathematics, 9, Reidel, Dordrecht, 1987 | MR | Zbl
[35] Yu. I. Manin, A. Q. Radul, Commun. Math. Phys., 98:1 (1985), 65–77 | DOI | MR | Zbl
[36] P. Mathieu, J. Math. Phys., 29:11 (1988), 2499–2506 | DOI | MR | Zbl
[37] W. Oevel, Z. Popowicz, Commun. Math. Phys., 139:3 (1991), 441–460 | DOI | MR | Zbl
[38] A. S. Carstea, Nonlinearity, 13:5 (2000), 1645–1656 | DOI | MR | Zbl
[39] A. S. Carstea, A. Ramani, B. Grammaticos, Nonlinearity, 14:5 (2001), 1419–1423 | DOI | MR | Zbl
[40] D. Sarma, Nucl. Phys. B, 681:3 (2004), 351–358, arXiv: nlin/0406067) | DOI | MR | Zbl
[41] Q. P. Liu, Y. F. Xie, Phys. Lett. A, 325:2 (2004), 139–143, arXiv: nlin/0212002 | DOI | MR | Zbl
[42] Q. P. Liu, Lett. Math. Phys., 35:2 (1995), 115–122, arXiv: hep-th/9409008 | DOI | MR | Zbl
[43] Q. P. Liu, X.-B. Hu, M.-X. Zhang, Nonlinearity, 18:4 (2005), 1597–1603, arXiv: nlin/0407050 | DOI | MR | Zbl
[44] S. Ghosh, D. Sarma, Nonlinearity, 16:2 (2003), 411–418, arXiv: nlin/0202031 | DOI | MR | Zbl
[45] S.-F. Tian, H.-Q. Zhang, J. Nonl. Math. Phys., 17:4 (2010), 491–502 | DOI | MR | Zbl
[46] S.-F. Tian, Z. Wang, H.-Q. Zhang, J. Math. Anal. Appl., 366:2 (2010), 646–662 | DOI | MR | Zbl
[47] V. S. Vladimirov, I. V. Volovich, TMF, 59:1 (1984), 3–27 | DOI | MR | Zbl
[48] V. S. Vladimirov, I. V. Volovich, TMF, 60:2 (1984), 169–198 | DOI | MR | Zbl
[49] D. Mumford, Tata Lectures on Theta, v. II, Progress in Mathematics, 43, Jacobian Theta Functions and Differential Equations, Birkhäuser, Boston, MA, 1984 | MR | Zbl
[50] I. McArthur, C. M. Yung, Mod. Phys. Lett. A, 8:18 (1993), 1739–1745 | DOI | MR | Zbl
[51] A. S. Carstea, Hirota bilinear formalism and supersymmetry, arXiv: nlin/0006032
[52] T. Inami, H. Kanno, Commun. Math. Phys., 136:3 (1991), 519–542 | DOI | MR | Zbl