Super Riemann theta function periodic wave solutions and rational characteristics for a~supersymmetric KdV--Burgers equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 3, pp. 350-380

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a multidimensional super Riemann theta function, we propose two key theorems for explicitly constructing multiperiodic super Riemann theta function periodic wave solutions of supersymmetric equations in the superspace $\mathbb{R}_{\Lambda}^{N+1,M}$, which is a lucid and direct generalization of the super-Hirota–Riemann method. Once a supersymmetric equation is written in a bilinear form, its super Riemann theta function periodic wave solutions can be directly obtained by using our two theorems. As an application, we present a supersymmetric Korteweg–de Vries–Burgers equation. We study the limit procedure in detail and rigorously establish the asymptotic behavior of the multiperiodic waves and the relations between periodic wave solutions and soliton solutions. Moreover, we find that in contrast to the purely bosonic case, an interesting phenomenon occurs among the super Riemann theta function periodic waves in the presence of the Grassmann variable. The super Riemann theta function periodic waves are symmetric about the band but collapse along with the band. Furthermore, the results can be extended to the case $N>2$; here, we only consider an existence condition for an $N$-periodic wave solution of a general supersymmetric equation.
Keywords: supersymmetric Korteweg–de Vries–Burgers equation, super-Hirota bilinear form, Riemann theta function, super Riemann theta function periodic wave solution, solitary wave solution.
@article{TMF_2012_170_3_a3,
     author = {Shou-fu Tian and Hong-qing Zhang},
     title = {Super {Riemann} theta function periodic wave solutions and rational characteristics for a~supersymmetric {KdV--Burgers} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {350--380},
     publisher = {mathdoc},
     volume = {170},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a3/}
}
TY  - JOUR
AU  - Shou-fu Tian
AU  - Hong-qing Zhang
TI  - Super Riemann theta function periodic wave solutions and rational characteristics for a~supersymmetric KdV--Burgers equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 350
EP  - 380
VL  - 170
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a3/
LA  - ru
ID  - TMF_2012_170_3_a3
ER  - 
%0 Journal Article
%A Shou-fu Tian
%A Hong-qing Zhang
%T Super Riemann theta function periodic wave solutions and rational characteristics for a~supersymmetric KdV--Burgers equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 350-380
%V 170
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a3/
%G ru
%F TMF_2012_170_3_a3
Shou-fu Tian; Hong-qing Zhang. Super Riemann theta function periodic wave solutions and rational characteristics for a~supersymmetric KdV--Burgers equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 3, pp. 350-380. http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a3/