Blowup of solutions of the three-dimensional Rosenau–Burgers equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 3, pp. 342-349 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the initial boundary value problem for the well-known three-dimensional Rosenau–Burgers equation in the cylinder $(0,L)\otimes\mathbb{S}$ (where $\mathbb{S}\subset\mathbb{R}^2$) for some boundary conditions. Using the test-function method, we obtain the result on the blowup of solutions of this initial boundary value problem during a finite time. This is one of the first results in the “blowup” direction for this equation.
Keywords: finite-time blowup, Sobolev-type nonlinear equation, nonlinear mixed boundary value problem, hydrodynamics, semiconductor
Mots-clés : Rosenau–Burgers equation.
@article{TMF_2012_170_3_a2,
     author = {M. O. Korpusov},
     title = {Blowup of solutions of the~three-dimensional {Rosenau{\textendash}Burgers} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {342--349},
     year = {2012},
     volume = {170},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a2/}
}
TY  - JOUR
AU  - M. O. Korpusov
TI  - Blowup of solutions of the three-dimensional Rosenau–Burgers equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 342
EP  - 349
VL  - 170
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a2/
LA  - ru
ID  - TMF_2012_170_3_a2
ER  - 
%0 Journal Article
%A M. O. Korpusov
%T Blowup of solutions of the three-dimensional Rosenau–Burgers equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 342-349
%V 170
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a2/
%G ru
%F TMF_2012_170_3_a2
M. O. Korpusov. Blowup of solutions of the three-dimensional Rosenau–Burgers equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 3, pp. 342-349. http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a2/

[1] Ph. Rosenau, Phys. Rev. A, 40:12 (1989), 7193–7196 | DOI | MR

[2] R. Camassa, D. D. Holm, Phys. Rev. Lett., 71:11 (1993), 1661–1664, arXiv: patt-sol/9305002 | DOI | MR | Zbl

[3] A. Constantin, J. Escher, Acta Math., 181:2 (1998), 229–243 | DOI | MR | Zbl

[4] C. Escudero, Phys. Rev. E, 71:4 (2005), 047302, 3 pp. | DOI | MR

[5] H. Liu, J. Nonlinear Math. Phys., 13:3 (2006), 441–466 | DOI | MR | Zbl

[6] V. A. Galaktionov, S. I. Pokhozhaev, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1819–1846 | MR | Zbl

[7] E. L. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 3–383 | MR | Zbl

[8] S. I. Pokhozhaev, Matem. sb., 199:9 (2008), 97–106 | DOI | MR | Zbl

[9] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR | Zbl

[10] V. A. Galaktionov, E. Mitidieri, S. I. Pohozaev, Nonlinear Anal., 70:8 (2009), 2930–2952 | DOI | MR | Zbl

[11] S. I. Pohozaev, Milan J. Math., 77:1 (2009), 127–150 | DOI | MR | Zbl

[12] N. Hayashi, E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, Asymptotics for Dissipative Nonlinear Equations, Lecture Notes in Mathematics, 1884, Springer, Berlin, 2006 | MR | Zbl

[13] L. Liu, M. Mei, Appl. Math. Comput., 131:1 (2002), 147–170 | DOI | MR | Zbl

[14] M. A. Park, Nonlinear Anal., 21:1 (1993), 77–85 | DOI | MR | Zbl

[15] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl

[16] H. A. Levine, Arch. Rational Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl

[17] H. A. Levine, Trans. Amer. Math. Soc., 192 (1974), 1–21 | MR | Zbl

[18] V. K. Kalantarov, O. A. Ladyzhenskaya, Zap. nauchn. sem. LOMI, 69, Nauka, Leningrad. otd., L., 1977, 77–102 | MR | Zbl

[19] L. K. Evans, Uravneniya s chastnymi proizvodnymi, Universitetskaya seriya, 7, Tamara Rozhkovskaya, Novosibirsk, 2003