Derivation and classification of Vlasov-type and magnetohydrodynamics equations: Lagrange identity and Godunov's form
Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 3, pp. 468-480 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the derivation of the Vlasov–Maxwell equations from the Lagrangian of classical electrodynamics, from which magnetohydrodynamic-type equations are in turn derived. We consider both the relativistic and nonrelativistic cases: with zero temperature as the exact consequence of the Vlasov–Maxwell equations and with nonzero temperature as a zeroth-order approximation of the Maxwell–Chapman–Enskog method. We obtain the Lagrangian identities and their generalizations for these cases and compare them.
Mots-clés : Vlasov equation, magnetohydrodynamics equations
Keywords: Lagrange identity, kinetic equation.
@article{TMF_2012_170_3_a10,
     author = {V. V. Vedenyapin and M. A. Negmatov},
     title = {Derivation and classification of {Vlasov-type} and magnetohydrodynamics equations: {Lagrange} identity and {Godunov's} form},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {468--480},
     year = {2012},
     volume = {170},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a10/}
}
TY  - JOUR
AU  - V. V. Vedenyapin
AU  - M. A. Negmatov
TI  - Derivation and classification of Vlasov-type and magnetohydrodynamics equations: Lagrange identity and Godunov's form
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 468
EP  - 480
VL  - 170
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a10/
LA  - ru
ID  - TMF_2012_170_3_a10
ER  - 
%0 Journal Article
%A V. V. Vedenyapin
%A M. A. Negmatov
%T Derivation and classification of Vlasov-type and magnetohydrodynamics equations: Lagrange identity and Godunov's form
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 468-480
%V 170
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a10/
%G ru
%F TMF_2012_170_3_a10
V. V. Vedenyapin; M. A. Negmatov. Derivation and classification of Vlasov-type and magnetohydrodynamics equations: Lagrange identity and Godunov's form. Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 3, pp. 468-480. http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a10/

[1] A. A. Vlasov, ZhETF, 8:3 (1938), 291–318 | Zbl

[2] A. A. Vlasov, Nelokalnaya statisticheskaya mekhanika, Nauka, M., 1978 | MR

[3] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M., L., 1946 | MR

[4] V. P. Maslov, P. P. Mosolov, Izv. AN SSSR. Ser. matem., 42:5 (1978), 1063–1100 | DOI | MR | Zbl

[5] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, Nauka, M., 1988 | MR | Zbl

[6] V. V. Vedenyapin, Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001

[7] M. B. Gavrikov, V. V. Savelev, Izv. AN SSSR. MZhG, 45:2 (2010), 176–192 | DOI | MR | Zbl

[8] V. V. Kozlov, UMN, 63:4(382) (2008), 93–130 | DOI | MR | Zbl

[9] W. Braun, K. Hepp, Commun. Math. Phys., 56:2 (1977), 101–113 | DOI | MR | Zbl

[10] V. Pauli, Teoriya otnositelnosti, Nauka, M., 1983 | MR | Zbl

[11] E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 10, Fizicheskaya kinetika, Nauka, M., 1979 | MR

[12] K. V. Brushlinskii, Matematicheskie i vychislitelnye zadachi magnitnoi gazodinamiki, Binom, M., 2009

[13] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 8, Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR | Zbl

[14] A. G. Kulikovskii, G. A. Lyubimov, Magnitnaya gidrodinamika, Logos, M., 2005

[15] S. I. Braginskii, “Yavleniya perenosa v plazme”, Voprosy teorii plazmy, 1, ed. M. A. Leontovich, Gosatomizdat, M., 1963, 183–272 | MR | Zbl

[16] Dzh. Fertsiger, G. Kaper, Matematicheskaya teoriya protsessov perenosa v gazakh, Mir, M., 1976