Cohomologies of spaces of Schwartz test functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 3, pp. 323-334 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We calculate cohomologies of the Schwartz algebras $\mathcal{D}$ and $\mathcal{S}$, which are basic spaces (test-function spaces) of the distribution theory. In the process, we find special cohomologies of the quotient algebras $\mathcal{E}/\mathcal{D}$ and $\mathcal{M}/\mathcal{S}$ ($\mathcal{E}$ and $\mathcal{M}$ are also test-function spaces), which are quite unusual from the standpoint of the standard functional analysis and are interesting for theoretical and mathematical physics.
Keywords: Schwartz distribution, cohomology, spherical representation.
@article{TMF_2012_170_3_a0,
     author = {V. V. Zharinov},
     title = {Cohomologies of spaces of {Schwartz} test functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--334},
     year = {2012},
     volume = {170},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a0/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Cohomologies of spaces of Schwartz test functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 323
EP  - 334
VL  - 170
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a0/
LA  - ru
ID  - TMF_2012_170_3_a0
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Cohomologies of spaces of Schwartz test functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 323-334
%V 170
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a0/
%G ru
%F TMF_2012_170_3_a0
V. V. Zharinov. Cohomologies of spaces of Schwartz test functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 3, pp. 323-334. http://geodesic.mathdoc.fr/item/TMF_2012_170_3_a0/

[1] L. Schwartz, Théorie des distributions, Tome I, Hermann Cie, Paris, 1950 ; Tome II, 1951 | MR | Zbl | MR | Zbl

[2] S. Maklein, Gomologiya, Mir, M., 1966 | MR | Zbl

[3] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Fizmatlit, M., 1959 | MR | Zbl

[4] R. Bott, L. V. Tu, Differentsialnye formy v algebraicheskoi topologii, Nauka, M., 1989 | MR | Zbl

[5] S. E. Konshtein, A. G. Smirnov, I. V. Tyutin, TMF, 143:2 (2005), 163–194 | DOI | MR | Zbl

[6] S. E. Konshtein, A. G. Smirnov, I. V. Tyutin, TMF, 148:2 (2006), 163–178 | DOI | MR | Zbl

[7] V. V. Zharinov, Integral Transforms Spec. Funct., 6:1-4 (1998), 347–356 | DOI | MR | Zbl

[8] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody teorii gomologii, Nauka, M., 1984 | MR | Zbl

[9] A. Kartan, Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971 | MR | Zbl