Can broken rotational invariance be reconciled with inflation?
Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 2, pp. 223-229

Voir la notice de l'article provenant de la source Math-Net.Ru

Motivated by claims of broken rotational invariance in the WMAP data, a number of models have appeared in the literature realizing this effect through vector field(s) with a nonvanishing spatial vacuum expectation value. We discuss why many such models have ghost instabilities.
Keywords: broken rotational invariance, ghost instability.
@article{TMF_2012_170_2_a4,
     author = {M. Peloso},
     title = {Can broken rotational invariance be reconciled with inflation?},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {223--229},
     publisher = {mathdoc},
     volume = {170},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_170_2_a4/}
}
TY  - JOUR
AU  - M. Peloso
TI  - Can broken rotational invariance be reconciled with inflation?
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 223
EP  - 229
VL  - 170
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_170_2_a4/
LA  - ru
ID  - TMF_2012_170_2_a4
ER  - 
%0 Journal Article
%A M. Peloso
%T Can broken rotational invariance be reconciled with inflation?
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 223-229
%V 170
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2012_170_2_a4/
%G ru
%F TMF_2012_170_2_a4
M. Peloso. Can broken rotational invariance be reconciled with inflation?. Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 2, pp. 223-229. http://geodesic.mathdoc.fr/item/TMF_2012_170_2_a4/