Can broken rotational invariance be reconciled with inflation?
Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 2, pp. 223-229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Motivated by claims of broken rotational invariance in the WMAP data, a number of models have appeared in the literature realizing this effect through vector field(s) with a nonvanishing spatial vacuum expectation value. We discuss why many such models have ghost instabilities.
Keywords: broken rotational invariance, ghost instability.
@article{TMF_2012_170_2_a4,
     author = {M. Peloso},
     title = {Can broken rotational invariance be reconciled with inflation?},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {223--229},
     year = {2012},
     volume = {170},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_170_2_a4/}
}
TY  - JOUR
AU  - M. Peloso
TI  - Can broken rotational invariance be reconciled with inflation?
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 223
EP  - 229
VL  - 170
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_170_2_a4/
LA  - ru
ID  - TMF_2012_170_2_a4
ER  - 
%0 Journal Article
%A M. Peloso
%T Can broken rotational invariance be reconciled with inflation?
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 223-229
%V 170
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_170_2_a4/
%G ru
%F TMF_2012_170_2_a4
M. Peloso. Can broken rotational invariance be reconciled with inflation?. Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 2, pp. 223-229. http://geodesic.mathdoc.fr/item/TMF_2012_170_2_a4/

[1] E. M. Lifshitz, I. M. Khalatnikov, Adv. Phys., 12:46 (1963), 185–249 ; V. A. Belinsky, I. M. Khalatnikov, E. M. Lifshitz, Adv. Phys., 19:80 (1970), 525–573 ; 31:6 (1982), 639–667 | DOI | MR | DOI | DOI

[2] Wilkinson Microwave Anisotropy Probe (WMAP) lambda.gsfc.nasa.gov

[3] M. Tegmark, A. de Oliveira-Costa, A. Hamilton, Phys. Rev. D, 68:12 (2003), 123523, 14 pp., arXiv: ; K. Land, J. Magueijo, Phys. Rev. Lett., 95:7 (2005), 071301, 4 pp., arXiv: astro-ph/0302496astro-ph/0502237 | DOI | DOI | MR

[4] N. E. Groeneboom, H. K. Eriksen, Astrophys. J., 690:2 (2009), 1807–1819, arXiv: 0807.2242 | DOI

[5] D. Hanson, A. Lewis, Phys. Rev. D, 80:6 (2009), 063004, 15 pp., arXiv: ; N. E. Groeneboom, L. Ackerman, I. K. Wehus, H. K. Eriksen, Bayesian analysis of an anisotropic universe model: systematics and polarization, arXiv: 0908.09630911.0150 | DOI

[6] L. H. Ford, Phys. Rev. D, 40:4 (1989), 967–972 | DOI

[7] L. Ackerman, S. M. Carroll, M. B. Wise, Phys. Rev. D, 75:8 (2007), 083502, 7 pp., arXiv: ; Erratum, 80:6 (2009), 069901 astro-ph/0701357 | DOI

[8] A. Golovnev, V. Mukhanov, V. Vanchurin, JCAP, 06 (2008), 009, 7 pp., arXiv: 0802.2068 | DOI

[9] K. Dimopoulos, M. Karciauskas, D. H. Lyth, Y. Rodriguez, JCAP, 05 (2009), 013, 35 pp., arXiv: 0809.1055 | DOI

[10] Planck Science Team Home, arXiv: www.sciops.esa.int/index.php?project=PLANCK

[11] A. E. Gümrükçüoğlu, C. R. Contaldi, M. Peloso, JCAP, 11 (2007), 005, 35 pp., arXiv: ; A. E. Gümrükçüoğlu, L. Kofman, M. Peloso, Phys. Rev. D, 78:10 (2008), 103525, 21 pp., arXiv: 0707.41790807.1335 | DOI | DOI

[12] B. Himmetoglu, C. R. Contaldi, M. Peloso, Phys. Rev. D, 79:6 (2009), 063517, 19 pp., arXiv: 0812.1231 | DOI

[13] B. Himmetoglu, C. R. Contaldi, M. Peloso, Phys. Rev. D, 80:12 (2009), 123530, 36 pp., arXiv: 0909.3524 | DOI

[14] B. Himmetoglu, C. R. Contaldi, M. Peloso, Phys. Rev. Lett., 102:11 (2009), 111301, 4 pp., arXiv: 0809.2779 | DOI

[15] M. Watanabe, S. Kanno, J. Soda, Phys. Rev. Lett., 102:19 (2009), 191302, 4 pp., arXiv: 0902.2833 | DOI

[16] K. Dimopoulos, M. Karciauskas, J. M. Wagstaff, Phys. Lett. B, 683:4–5 (2010), 298–301, arXiv: 0909.0475 | DOI

[17] A. E. Gümrükçüoğlu, B. Himmetoglu, M. Peloso, Phys. Rev. D, 81:6 (2010), 063528, 16 pp., arXiv: 1001.4088 | DOI