Chirality-violating condensates in QCD and their connection with zero-mode solutions of quark Dirac equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 2, pp. 165-173 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We demonstrate that chirality-violating condensates in massless QCD arise entirely from zero-mode solutions of the Dirac equation in arbitrary gluon fields. We propose a model in which the zero-mode solutions are the ones for quarks moving in the instanton field and calculate the quark condensate magnetic susceptibilities $\chi$ of dimension three and $\kappa$ and $\xi$ of dimension five based on this model. The good correspondence of the values of $\chi$, $\kappa$, and $\xi$ obtained using this approach with the values found from the hadronic spectrum is a serious argument that instantons are the only source of chirality-violating condensates in QCD. We discuss the temperature dependence of the quark condensate and show that the phase transition corresponding to the temperature dependence $\alpha(T)$ of the quark condensate as an order parameter is a crossover-type transition.
Mots-clés : zero mode
Keywords: instanton, condensate.
@article{TMF_2012_170_2_a0,
     author = {B. L. Ioffe},
     title = {Chirality-violating condensates in {QCD} and their connection with zero-mode solutions of quark {Dirac} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {165--173},
     year = {2012},
     volume = {170},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_170_2_a0/}
}
TY  - JOUR
AU  - B. L. Ioffe
TI  - Chirality-violating condensates in QCD and their connection with zero-mode solutions of quark Dirac equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 165
EP  - 173
VL  - 170
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_170_2_a0/
LA  - ru
ID  - TMF_2012_170_2_a0
ER  - 
%0 Journal Article
%A B. L. Ioffe
%T Chirality-violating condensates in QCD and their connection with zero-mode solutions of quark Dirac equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 165-173
%V 170
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_170_2_a0/
%G ru
%F TMF_2012_170_2_a0
B. L. Ioffe. Chirality-violating condensates in QCD and their connection with zero-mode solutions of quark Dirac equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 2, pp. 165-173. http://geodesic.mathdoc.fr/item/TMF_2012_170_2_a0/

[1] B. L. Ioffe, Nucl. Phys. B, 188:2 (1981), 317–341 | DOI

[2] B. L. Ioffe, Phys. Lett. B, 678:5 (2009), 512–515, arXiv: 0906.0283 | DOI

[3] B. L. Ioffe, UFN, 176:10 (2006), 1103–1104, arXiv: hep-ph/0601250 | DOI | DOI

[4] M. Shifman (ed.), Instantons in Gauge Theories, World Scientific, River Edge, NJ, 1994 | MR

[5] B. L. Ioffe, V. S. Fadin, L. N. Lipatov, Quantum Chromodynamics: Perturbative and Nonperturbative Aspects, Cambridge Monographs on Particle Physics, Nuclear Physics, and Cosmology, 30, Cambridge Univ. Press, Cambridge, 2010 | Zbl

[6] A. I. Vainshtein, V. I. Zakharov, V. A. Novikov, M. A. Shifman, UFN, 136:4 (1982), 553–591 | DOI | DOI | MR

[7] T. Banks, A. Casher, Nucl. Phys. B, 169:1–2 (1980), 103–125 | DOI | MR

[8] L. S. Brown, R. Carlitz, C. Lee, Phys. Rev. D, 16:2 (1977), 417–422 | DOI | MR

[9] R. Jackiw, C. Rebbi, Phys. Rev. D, 16:4 (1977), 1052–1060 | DOI | MR

[10] D. I. Diakonov, V. Yu. Petrov, Phys. Lett. B, 147:4–5 (1984), 351–356 | DOI

[11] T. Schäfer, E. V. Shuryak, Rev. Modern Phys., 70:2 (1998), 323–425, arXiv: hep-ph/9610451 | DOI | MR | Zbl

[12] B. L. Ioffe, Z. Phys. C, 18:1 (1983), 67–68 | DOI

[13] B. L. Ioffe, YaF, 72:7 (2009), 1263–1270, arXiv: 0810.4234 | DOI

[14] B. L. Ioffe, Prog. Part. Nucl. Phys., 56:1 (2006), 232–277, arXiv: hep-ph/0502148 | DOI

[15] B. M. Belyaev, B. L. Ioffe, ZhETF, 83:3 (1982), 876–891

[16] G. 't Hooft, Phys. Rev. D, 14:12 (1976), 3432–3450 | DOI

[17] M. V. Polyakov, C. Weiss, Phys. Lett. B, 387:4 (1996), 841–847, arXiv: hep-ph/9607244 | DOI

[18] B. L. Ioffe, A. V. Smilga, Nucl. Phys. B, 232:1 (1984), 109–142 | DOI | MR

[19] V. M. Belyaev, I. I. Kogan, YaF, 40 (1984), 1035–1038

[20] I. I. Balitsky, A. V. Kolesnichenko, A. V. Yung, YaF, 41 (1985), 282–284

[21] P. Ball, V. M. Braun, N. Kivel, Nucl. Phys. B, 649:1–2 (2003), 263–296, arXiv: hep-ph/0207307 | DOI

[22] J. Rohrwild, JHEP, 09 (2007), 073, 17 pp., arXiv: 0708.1405 | DOI

[23] H.-C. Kim, M. Mussakhanov, M. Siddikov, Phys. Lett. B, 608:1–2 (2005), 95–106, arXiv: hep-ph/0411181 | DOI

[24] I. I. Kogan, D. Wyler, Phys. Lett. B, 274:1 (1992), 100–110 | DOI

[25] J. Pasupathy, J. P. Singh, S. L. Wilson, C. B. Chiu, Phys. Rev. D, 36:5 (1987), 1442–1450 | DOI

[26] M. A. Shifman, A. V. Vainshtein, V. I. Zakharov, Nucl. Phys. B, 163 (1980), 46–56 | DOI

[27] D. J. Gross, R. D. Pisarski, L. G. Yaffe, Rev. Modern Phys., 53:1 (1981), 43–80 | DOI | MR

[28] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 5, Statisticheskaya fizika, Nauka, M., 1976 | MR | Zbl