Classical analogue of a quantum Schwarzschild black hole: “Standard model” and beyond
Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 1, pp. 87-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We build a model in which the main global properties of classical and semiclassical black holes become local: these are the event horizon, “no-hair”, temperature, and entropy. Our construction is based on the features of a quantum collapse, discovered when studying some particular quantum black hole models. But our model is purely classical, and this allows using the Einstein equations and classical (local) thermodynamics self-consistently and, in particular, solving the "puzzle of $\ln 3$".
Keywords: quantum black hole, thermodynamics, quasinormal frequency.
@article{TMF_2012_170_1_a5,
     author = {V. A. Berezin},
     title = {Classical analogue of a~quantum {Schwarzschild} black hole: {{\textquotedblleft}Standard} model{\textquotedblright} and beyond},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {87--101},
     year = {2012},
     volume = {170},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_170_1_a5/}
}
TY  - JOUR
AU  - V. A. Berezin
TI  - Classical analogue of a quantum Schwarzschild black hole: “Standard model” and beyond
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 87
EP  - 101
VL  - 170
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_170_1_a5/
LA  - ru
ID  - TMF_2012_170_1_a5
ER  - 
%0 Journal Article
%A V. A. Berezin
%T Classical analogue of a quantum Schwarzschild black hole: “Standard model” and beyond
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 87-101
%V 170
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2012_170_1_a5/
%G ru
%F TMF_2012_170_1_a5
V. A. Berezin. Classical analogue of a quantum Schwarzschild black hole: “Standard model” and beyond. Teoretičeskaâ i matematičeskaâ fizika, Tome 170 (2012) no. 1, pp. 87-101. http://geodesic.mathdoc.fr/item/TMF_2012_170_1_a5/

[1] S. W. Hawking, G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs of Mathematical Physics, 1, Cambridge Univ. Press, London, 1973 | MR | Zbl

[2] R. Ruffini, J. A. Wheeler, Phys. Today, 24:1 (1971), 30–36 | DOI | MR

[3] T. Regge, J. A. Wheeler, Phys. Rev., 108:4 (1957), 1063–1069 | DOI | MR | Zbl

[4] S. Chandrasekhar, The Mathematical Theory of Black Holes, International Series of Monographs on Physics, 69, Oxford Univ. Press, New York, 1983 | MR | Zbl

[5] D. Cristodoulou, Phys. Rev. Lett., 25:22 (1970), 1596–1597 | DOI

[6] D. Cristodoulou, R. Ruffini, Phys. Rev. D, 4:12 (1971), 3552–3555 | DOI

[7] J. D. Bekenstein, Lett. Nuovo Cimento, 4:2 (1972), 737–740 ; Phys. Rev. D, 7:8 (1973), 2333–2346 ; 9:12 (1974), 3292–3300 | DOI | DOI | MR | DOI

[8] J. M. Bardeen, B. Carter, S. W. Hawking, Commun. Math. Phys., 31:1 (1973), 161–170 | DOI | MR | Zbl

[9] S. W. Hawking, Nature, 248:5443 (1974), 30–31 ; Commun. Math. Phys., 43:3 (1975), 199–220 | DOI | DOI | MR | Zbl

[10] W. G. Unruh, Phys. Rev. D, 14 (1976), 870–892 | DOI

[11] J. D. Bekenstein, Lett. Nuovo Cimento, 11:2 (1974), 467–470 | DOI

[12] J. D. Bekenstein, V. F. Mukhanov, Phys. Lett. B, 360:1–2 (1995), 7–12, arXiv: gr-qc/9505012 | DOI | MR

[13] A. Ashtekar, J. Baez, A. Corichi, K. Krasnov, Phys. Rev. Lett., 80:5 (1998), 904–907, arXiv: gr-qc/9710007 | DOI | MR | Zbl

[14] A. Ashtekar, J. Baez, K. Krasnov, Adv. Theor. Math. Phys., 4:1 (2000), 1–94 | DOI | MR | Zbl

[15] S. Hod, Phys. Rev. Lett., 81:20 (1998), 4293–4296, arXiv: gr-qc/9812002 | DOI | MR | Zbl

[16] L. Motl, Adv. Theor. Math. Phys., 6:6 (2003), 1135–1162, arXiv: gr-qc/0212096 | DOI | MR

[17] L. Motl, A. Neitzke, Adv. Theor. Math. Phys., 7:2 (2003), 307–330 | DOI | MR

[18] J. Natario, R. Schiappa, “Asymptotic Quasinormal Frequencies for d-Dimensional Black Holes and Quantum Gravity”, Adv. Theor. Math. Phys., 8:6 (2004), 1001–1131, arXiv: hep-th/0411267 | DOI | MR | Zbl

[19] V. A. Berezin, Phys. Lett. B, 241:2 (1990), 194–200 | DOI | MR

[20] V. A. Berezin, A. M. Boyarsky, A. Yu. Neronov, Phys. Rev. D, 57:2 (1998), 1118–1128, arXiv: gr-qc/9708060 | DOI | MR

[21] V. A. Berezin, M. Yu. Okhrimenko, Class. Quant. Grav., 18:11 (2001), 2195–2215, arXiv: gr-qc/0006085 | DOI | MR | Zbl