Gauge theories as matrix models
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 3, pp. 391-412 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the relation between the Seiberg–Witten prepotentials, Nekrasov functions, and matrix models. On the semiclassical level, we show that the matrix models of Eguchi–Yang type are described by instantonic contributions to the deformed partition functions of supersymmetric gauge theories. We study the constructed explicit exact solution of the four-dimensional conformal theory in detail and also discuss some aspects of its relation to the recently proposed logarithmic beta-ensembles. We also consider “quantizing” this picture in terms of two-dimensional conformal theory with extended symmetry and stress its difference from the well-known picture of the perturbative expansion in matrix models. Instead, the representation of Nekrasov functions using conformal blocks or Whittaker vectors provides a nontrivial relation to Teichmüller spaces and quantum integrable systems.
Keywords: supersymmetric gauge theory, matrix model, two-dimensional conformal field theory, highest-weight module of the Virasoro algebra.
@article{TMF_2011_169_3_a4,
     author = {A. V. Marshakov},
     title = {Gauge theories as matrix models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {391--412},
     year = {2011},
     volume = {169},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a4/}
}
TY  - JOUR
AU  - A. V. Marshakov
TI  - Gauge theories as matrix models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 391
EP  - 412
VL  - 169
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a4/
LA  - ru
ID  - TMF_2011_169_3_a4
ER  - 
%0 Journal Article
%A A. V. Marshakov
%T Gauge theories as matrix models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 391-412
%V 169
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a4/
%G ru
%F TMF_2011_169_3_a4
A. V. Marshakov. Gauge theories as matrix models. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 3, pp. 391-412. http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a4/

[1] N. Seiberg, E. Witten, Nucl. Phys. B, 426:1 (1994), 19–52, arXiv: hep-th/9407087 | DOI | MR | Zbl

[2] P. Argyres, M. Plesser, N. Seiberg, Nucl. Phys. B, 471:1–2 (1996), 159–194, arXiv: hep-th/9603042 | DOI | MR | Zbl

[3] A. Marshakov, A. Yung, Nucl. Phys. B, 831:1–2 (2010), 72–104, arXiv: 0912.1366 | DOI | MR | Zbl

[4] N. Nekrasov, Adv. Theor. Math. Phys., 7:5 (2004), 831–864, arXiv: hep-th/0206161 | DOI | MR

[5] A. S. Losev, A. Marshakov, N. Nekrasov, “Small instantons, little strings and free fermions”, From Fields to Strings: Circumnavigating Theoretical Physics, Ian Kogan memorial collection, eds. M. Shifman et al., World Scientific, River Edge, NJ, 2005, 581–621, arXiv: hep-th/0302191 | MR | Zbl

[6] N. Nekrasov, A. Okounkov, “Seiberg-Witten theory and random partitions”, The Unity of Mathematics, Progr. Math., 244, Birkhäuser Boston, Boston, MA, 2006, 525–596, arXiv: hep-th/0306238 | DOI | MR | Zbl

[7] A. Marshakov, N. Nekrasov, JHEP, 01 (2007), 104, 39 pp., arXiv: ; А. В. Маршаков, ТМФ, 154:3 (2008), 424–450, arXiv: hep-th/06120190706.2857 | DOI | MR | DOI | MR | Zbl

[8] A. Marshakov, JHEP, 03 (2008), 055, 29 pp., arXiv: 0712.2802 | DOI | MR

[9] T. Nakatsu, K. Takasaki, Commun. Math. Phys., 285:2 (2009), 445–468, arXiv: ; T. Nakatsu, Y. Noma, K. Takasaki, Internat. J. Modern Phys. A, 23:14–15 (2008), 2332–2342, arXiv: ; Nucl. Phys. B, 808:3 (2009), 411–440, arXiv: 0710.53390806.36750807.0746 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[10] A. Braverman, Instanton counting via affine Lie algebras I: equivariant J-functions of (affine) flag manifolds and Whittaker vectors, arXiv: math/0401409 | MR

[11] R. Flume, R. Pogossian, Internat. J. Modern Phys. A, 18:14 (2003), 2541–2563, arXiv: ; H. Nakajima, K. Yoshioka, Instanton counting on blowup. I. 4-dimensional pure gauge theory, arXiv: ; Lectures on instanton counting, arXiv: ; U. Bruzzo, F. Fucito, Nucl. Phys. B, 678:3 (2004), 638–655, arXiv: ; F. Fucito, J. Morales, R. Poghossian, JHEP, 10 (2004), 037, 23 pp., arXiv: ; S. Shadchin, SIGMA, 2 (2006), 008, 11 pp., arXiv: hep-th/0208176math/0306198math/0311058math-ph/0310036hep-th/0408090hep-th/0601167 | DOI | MR | Zbl | MR | DOI | MR | Zbl | DOI | DOI | MR | Zbl

[12] L. Alday, D. Gaiotto, Y. Tachikawa, Lett. Math. Phys., 91:2 (2010), 167–197, arXiv: 0906.3219 | DOI | MR | Zbl

[13] N. Wyllard, JHEP, 11 (2009), 002, 22 pp., arXiv: ; A. Mironov, A. Morozov, Nucl. Phys. B, 825:1–2 (2009), 1–37, arXiv: ; Phys. Lett. B, 682:1 (2009), 118–124, arXiv: ; N. Drukker, J. Gomis, T. Okuda, J. Teschner, JHEP, 02 (2010), 057, 61 pp., arXiv: ; G. Bonelli, A. Tanzini, Phys. Lett. B, 691:2 (2010), 111–115, arXiv: ; L. Alday, F. Benini, Y. Tachikawa, Phys. Rev. Lett., 105:14 (2010), 141601, 4 pp., arXiv: ; R. Poghossian, JHEP, 12 (2009), 038, 14 pp., arXiv: ; L. Hadasz, Z. Jaskólski, P. Suchanek, JHEP, 01 (2010), 063, 13 pp. ; Proving the AGT relation for $N_{\text{f}}=0,1,2$ antifundamentals, arXiv: ; V. Alba, And. Morozov, Nucl. Phys. B, 840:3 (2010), 441–468, arXiv: ; M. Taki, JHEP, 05 (2010), 038, arXiv: ; JHEP, 07 (2011), 047, arXiv: ; S. Yanagida, J. Algebra, 333 (2011), 273–294, arXiv: ; Norms of logarithmic primaries of Virasoro algebra, arXiv: ; N. Drukker, D. Gaiotto, J. Gomis, The virtue of defects in 4D gauge theories and 2D CFTs, arXiv: ; H. Itoyama, T. Oota, Nucl. Phys. B, 838:3 (2010), 298–330, arXiv: ; C. Kozçaz, S. Pasquetti, F. Passerini, N. Wyllard, JHEP, 01 (2011), 045, 40 pp., arXiv: ; H. Itoyama, T. Oota, N. Yonezawa, Phys. Rev. D, 82 (2010), 085031, 10 pp., arXiv: ; K. Maruyoshi, F. Yagi, JHEP, 01 (2011), 042, 18 pp., arXiv: ; G. Bonelli, K. Maruyoshi, A. Tanzini, F. Yagi, JHEP, 07 (2011), 055, 23 pp., arXiv: ; A. Mironov, A. Morozov, Sh. Shakirov, J. Phys. A, 44:8 (2011), 085401, 11 pp., arXiv: ; JHEP, 03 (2011), 102, 26 pp., arXiv: 0907.21890908.25690909.35310909.11050909.40310909.47760909.34121004.18410912.25350912.47891007.25241003.10491010.05281003.11121003.29291008.14121008.18611009.55531011.54171010.17341011.3481 | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | Zbl | DOI | DOI | Zbl | DOI | MR | DOI | MR | Zbl | DOI

[14] B. Eynard, N. Orantin, M. Mariño, JHEP, 06 (2007), 058, 20 pp., arXiv: ; B. Eynard, J. Stat. Mech. Theory Exp., 10 (2009), 10011, 72 pp., arXiv: ; Л. О. Чехов, Б. Эйнард, О. Маршал, ТМФ, 166:2 (2011), 163–215, arXiv: hep-th/07021100905.05351009.6007 | DOI | MR | MR | DOI | Zbl

[15] A. Mironov, A. Morozov, Sh. Shakirov, JHEP, 02 (2010), 030, 26 pp., arXiv: ; Towards a proof of AGT conjecture by methods of matrix models, arXiv: 0911.57211011.5629 | DOI | MR

[16] T. Eguchi, S.-K. Yang, Modern Phys. Lett. A, 9:31 (1994), 2893–2902, arXiv: hep-th/9407134 | DOI | MR | Zbl

[17] A. Klemm, P. Sulkowski, Nucl. Phys. B, 819:3 (2009), 400–430, arXiv: 0810.4944 | DOI | MR | Zbl

[18] R. Dijkgraaf, C. Vafa, Toda theories, matrix models, topological strings, and $n=2$ gauge systems, arXiv: 0909.2453 | MR

[19] A. Marshakov, “Strings, integrable systems, geometry and statistical models”, Lie Theory and Its Applications in Physics. V, eds. H.-D. Doebner, V. K. Dobrev, World Sci. Publ., River Edge, NJ, 2004, 231–240, arXiv: hep-th/0401199 | DOI | MR

[20] A. Migdal, Phys. Rept., 102:4 (1983), 199–290 | DOI

[21] R. Dijkgraaf, C. Vafa, Nucl. Phys. B, 644:1–2 (2002), 3–20, arXiv: ; 21–39, arXiv: ; A perturbative window into non-perturbative physics, arXiv: hep-th/0206255hep-th/0207106hep-th/0208048 | DOI | MR | Zbl | DOI | Zbl

[22] L. Chekhov, A. Mironov, Phys. Lett. B, 552:3–4 (2003), 293–302, arXiv: hep-th/0209085 | DOI | MR | Zbl

[23] L. Chekhov, A. Marshakov, A. Mironov, D. Vasiliev, Phys. Lett. B, 562:3–4 (2003), 323–338, arXiv: ; Л. О. Чехов, А. В. Маршаков, А. Д. Миронов, Д. Васильев, “Комплексная геометрия матричных моделей”, Нелинейная динамика, Сборник статей, Тр. МИАН, 251, Наука, М., 2005, 265–306, arXiv: hep-th/0301071hep-th/0506075 | DOI | MR | Zbl | MR | Zbl

[24] V. Kazakov, A. Marshakov, J. Phys. A, 36:12 (2003), 3107–3136, arXiv: hep-th/0211236 | DOI | MR | Zbl

[25] A. V. Marshakov, TMF, 147:2 (2006), 163–228 ; 147:3, 399–449 | DOI | MR | Zbl | DOI | MR | Zbl

[26] A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, A. Orlov, Nucl. Phys. B, 357:2–3 (1991), 565–618 | DOI | MR

[27] A. Hanany, Y. Oz, Nucl. Phys. B, 452:1–2 (1995), 283–312, arXiv: hep-th/9505075 | DOI | MR | Zbl

[28] A. Gorsky, A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 380:1–2 (1996), 75–80, arXiv: hep-th/9603140 | DOI | MR

[29] A. Marshakov, A. Mironov, A. Morozov, JHEP, 11 (2009), 048, 16 pp., arXiv: 0909.3338 | DOI | MR

[30] D. Gaiotto, $N=2$ dualities, arXiv: 0904.2715 | MR

[31] T. Eguchi, K. Maruyoshi, JHEP, 02 (2010), 022, 21 pp., arXiv: 0911.4797 | DOI | MR

[32] A. Zamolodchikov, Al. Zamolodchikov, Nucl. Phys. B, 477:2 (1996), 577–605, arXiv: hep-th/9506136 | DOI | MR | Zbl

[33] D. Gaiotto, Asymptotically free $N=2$ theories and irregular conformal blocks, arXiv: 0908.0307

[34] A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 682:1 (2009), 125–129, arXiv: 0909.2052 | DOI | MR

[35] E. Barnes, Proc. London Math. Soc., 31:1 (1899), 358–381 ; Phil. Trans. Roy. Soc. London A, 196 (1901), 265–387 ; Trans. Cambridge Phil. Soc., 19 (1904), 374–425 | DOI | Zbl | DOI | Zbl | Zbl

[36] A. Gerasimov, A. Levin, A. Marshakov, Nucl. Phys. B, 360:1–2 (1991), 537–558 | DOI | MR

[37] I. M. Krichever, Commun. Pure. Appl. Math., 47 (1994), 437–475, arXiv: hep-th/9205110 | DOI | MR | Zbl

[38] I. Krichever, A. Marshakov, A. Zabrodin, Commun. Math. Phys., 259:1 (2005), 1–44, arXiv: hep-th/0309010 | DOI | MR | Zbl

[39] L. Faddeev, R. Kashaev, Modern Phys. Lett. A, 9:5 (1994), 427–434, arXiv: ; R. Kashaev, Quantization of Teichmuller spaces and the quantum dilogarithm, arXiv: ; Л. О. Чехов, В. В. Фок, ТМФ, 120:3 (1999), 511–528, arXiv: ; V. V. Fock, A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, arXiv: ; J. Teschner, Internat. J. Modern Phys. A, 19:S2 (2004), 459–477, arXiv: ; Quantization of the Hitchin moduli spaces, Liouville theory, and the geometric Langlands correspondence I, arXiv: hep-th/9310070q-alg/9705021math/9908165math/0311149hep-th/03031491005.2846 | DOI | MR | Zbl | MR | DOI | MR | Zbl | MR | DOI | MR | Zbl

[40] Al. Zamolodchikov, Internat. J. Modern Phys. A, 19:S2 (2004), 510–523, arXiv: ; On the three-point function in minimal Liouville gravity, arXiv: hep-th/0312279hep-th/0505063 | DOI | MR | Zbl

[41] S. Kharchev, D. Lebedev, M. Semenov-Tian-Shansky, Commun. Math. Phys., 225:3 (2002), 573–609, arXiv: hep-th/0102180 | DOI | MR | Zbl

[42] N. A. Nekrasov, S. L. Shatashvili, Prog. Theor. Phys. Suppl., 177 (2009), 105–119, arXiv: 0901.4748 | DOI | Zbl

[43] K. Kozlowski, J. Teschner, TBA for the Toda chain, arXiv: 1006.2906 | MR

[44] M. Spreafico, J. Number Theory, 129:9 (2009), 2035–2063 | DOI | MR | Zbl