Discrete spectra of the~Dirac Hamiltonian in Coulomb and Aharonov--Bohm potentials in $2+1$ dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 3, pp. 368-390

Voir la notice de l'article provenant de la source Math-Net.Ru

We find all self-adjoint Dirac Hamiltonians in Coulomb and Aharonov–Bohm potentials in $2+1$ dimensions with the fermion spin taken into account. We obtain implicit equations for the spectra and construct eigenfunctions for all self-adjoint Dirac Hamiltonians in the indicated external fields. We find explicit solutions of the equations for the spectra in some cases.
Keywords: symmetric operator, self-adjoint extension of the Hamiltonian, Aharonov–Bohm potential, spin.
Mots-clés : Coulomb potential in $2+1$ dimensions
@article{TMF_2011_169_3_a3,
     author = {V. R. Khalilov and K. E. Lee},
     title = {Discrete spectra of {the~Dirac} {Hamiltonian} in {Coulomb} and {Aharonov--Bohm} potentials in $2+1$ dimensions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {368--390},
     publisher = {mathdoc},
     volume = {169},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a3/}
}
TY  - JOUR
AU  - V. R. Khalilov
AU  - K. E. Lee
TI  - Discrete spectra of the~Dirac Hamiltonian in Coulomb and Aharonov--Bohm potentials in $2+1$ dimensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 368
EP  - 390
VL  - 169
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a3/
LA  - ru
ID  - TMF_2011_169_3_a3
ER  - 
%0 Journal Article
%A V. R. Khalilov
%A K. E. Lee
%T Discrete spectra of the~Dirac Hamiltonian in Coulomb and Aharonov--Bohm potentials in $2+1$ dimensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 368-390
%V 169
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a3/
%G ru
%F TMF_2011_169_3_a3
V. R. Khalilov; K. E. Lee. Discrete spectra of the~Dirac Hamiltonian in Coulomb and Aharonov--Bohm potentials in $2+1$ dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 3, pp. 368-390. http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a3/