Discrete spectra of the Dirac Hamiltonian in Coulomb and Aharonov–Bohm potentials in $2+1$ dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 3, pp. 368-390 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find all self-adjoint Dirac Hamiltonians in Coulomb and Aharonov–Bohm potentials in $2+1$ dimensions with the fermion spin taken into account. We obtain implicit equations for the spectra and construct eigenfunctions for all self-adjoint Dirac Hamiltonians in the indicated external fields. We find explicit solutions of the equations for the spectra in some cases.
Keywords: symmetric operator, self-adjoint extension of the Hamiltonian, Aharonov–Bohm potential, spin.
Mots-clés : Coulomb potential in $2+1$ dimensions
@article{TMF_2011_169_3_a3,
     author = {V. R. Khalilov and K. E. Lee},
     title = {Discrete spectra of {the~Dirac} {Hamiltonian} in {Coulomb} and {Aharonov{\textendash}Bohm} potentials in $2+1$ dimensions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {368--390},
     year = {2011},
     volume = {169},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a3/}
}
TY  - JOUR
AU  - V. R. Khalilov
AU  - K. E. Lee
TI  - Discrete spectra of the Dirac Hamiltonian in Coulomb and Aharonov–Bohm potentials in $2+1$ dimensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 368
EP  - 390
VL  - 169
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a3/
LA  - ru
ID  - TMF_2011_169_3_a3
ER  - 
%0 Journal Article
%A V. R. Khalilov
%A K. E. Lee
%T Discrete spectra of the Dirac Hamiltonian in Coulomb and Aharonov–Bohm potentials in $2+1$ dimensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 368-390
%V 169
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a3/
%G ru
%F TMF_2011_169_3_a3
V. R. Khalilov; K. E. Lee. Discrete spectra of the Dirac Hamiltonian in Coulomb and Aharonov–Bohm potentials in $2+1$ dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 3, pp. 368-390. http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a3/

[1] A. M. J. Schakel, G. W. Semenoff, Phys. Rev. Lett., 66:20 (1991), 2653–2656 | DOI

[2] Y. Aharonov, D. Bohm, Phys. Rev., 115:3 (1959), 485–491 | DOI | MR | Zbl

[3] R. Prendzh, S. Girvin (red.), Kvantovyi effekt Kholla, Mir, M., 1989

[4] F. Wilczek, Fractional Statistics and Anyon Superconductivity, World Scientific, Teaneck, NJ, 1990 | MR

[5] A. Neagu, A. M. J. Schakel, Phys. Rev. D, 48:4 (1993), 1785–1791, arXiv: hep-th/9306092 | DOI

[6] M. G. Alford, F. Wilczek, Phys. Rev. Lett., 62:10 (1989), 1071–1074 | DOI | MR

[7] Ph. De Sousa Gerbert, Phys. Rev. D, 40:4 (1989), 1346–1349 | DOI

[8] M. G. Alford, J. March-Pussel, F. Wilczek, Nucl. Phys. B, 328:1 (1989), 140–158 | DOI

[9] K. S. Novoselov A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature, 438:7065 (2005), 197–200, arXiv: cond-mat/0509330 | DOI

[10] Z. Jiang, Y. Zhang, H. L. Stormer, P. Kim, Phys. Rev. Lett., 99:10 (2007), 106802, 4 pp., arXiv: 0705.1102 | DOI

[11] I. F. Herbut, Phys. Rev. Lett., 104:6 (2010), 066404, 4 pp., arXiv: 0909.4231 | DOI

[12] I. V. Tyutin, Rasseyanie elektronov solenoidom, preprint No 27, FIAN, M., 1974, arXiv: 0801.2167

[13] Ya. B. Zeldovich, V. S. Popov, UFN, 105:3–4 (1971), 403–440 | DOI

[14] A. B. Migdal, Fermiony i bozony v silnykh polyakh, Nauka, M., 1978

[15] J. Rafelski, L. P. Fulcher, A. Klein, Phys. Rep., 38:5 (1978), 227–361 | DOI

[16] M. Soffel, B. Müller, W. Greiner, Phys. Rep. C, 85:2 (1982), 51–122 | DOI | MR

[17] W. Greiner, J. Reinhardt, Quantum Electrodynamics, Springer, Berlin, 2009 | MR | Zbl

[18] V. R. Khalilov, TMF, 116:2 (1998), 277–287 | DOI | Zbl

[19] V. R. Khalilov, TMF, 158:2 (2009), 250–262 | DOI | Zbl

[20] B. L. Voronov, D. M. Gitman, I. V. Tyutin, TMF, 150:1 (2007), 41–84 | DOI | MR | Zbl

[21] D. M. Gitman, A. A. Smirnov, I. V. Tyutin, B. L. Voronov, Self-adjoint Schrödinger and Dirac operators with Aharonov–Bohm and magnetic-solenoid fields, arXiv: 0911.0946 | MR

[22] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[23] S. G. Krein (red.), Funktsionalnyi analiz, Nauka, M., 1972 | MR

[24] C. R. Hagen, Phys. Rev. Lett., 64:5 (1990), 503–506 | DOI | MR | Zbl

[25] V. R. Khalilov, C.-L. Ho, Ann. Phys., 323:5 (2008), 1280–1293, arXiv: 0708.3131 | DOI | MR | Zbl

[26] V. R. Khalilov, Phys. Rev. A, 71:1 (2005), 012105, 6 pp., arXiv: quant-ph/0406033 | DOI

[27] B. L. Voronov, D. M. Gitman, I. V. Tyutin, Self-adjoint differential operators associated with self-adjoint differential expressions, arXiv: quant-ph/0603187

[28] V. B. Berestetskii, E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 4, Kvantovaya elektrodinamika, Nauka, M., 1980 | MR

[29] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1971 | MR | MR | Zbl

[30] Z. Flyugge, Zadachi po kvantovoi mekhanike, Mir, M., 1974 | MR | Zbl