Deriving hydrodynamic equations for lattice systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 3, pp. 352-367 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the dynamics of lattice systems in $\mathbb Z^d$, $d\ge1$. We assume that the initial data are random functions. We introduce the system of initial measures $\{\mu_0^{\varepsilon},\;\varepsilon>0\}$. The measures $\mu_0^{\varepsilon}$ are assumed to be locally homogeneous or “slowly changing” under spatial shifts of the order $o(\varepsilon^{-1})$ and inhomogeneous under shifts of the order $\varepsilon^{-1}$. Moreover, correlations of the measures $\mu_0^{\varepsilon}$ decrease uniformly in $\varepsilon$ at large distances. For all $\tau\in\mathbb R\setminus0$, $r\in\mathbb R^d$, and $\kappa>0$, we consider distributions of a random solution at the instants $t=\tau/\varepsilon^{\kappa}$ at points close to $[r/\varepsilon]\in\mathbb Z^d$. Our main goal is to study the asymptotic behavior of these distributions as $\varepsilon\to0$ and to derive the limit hydrodynamic equations of the Euler and Navier–Stokes type.
Keywords: harmonic crystal, Cauchy problem, random initial data, weak convergence of measures, Gaussian measure, Navier–Stokes equation.
Mots-clés : hydrodynamic limit, Euler equation
@article{TMF_2011_169_3_a2,
     author = {T. V. Dudnikova},
     title = {Deriving hydrodynamic equations for lattice systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {352--367},
     year = {2011},
     volume = {169},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a2/}
}
TY  - JOUR
AU  - T. V. Dudnikova
TI  - Deriving hydrodynamic equations for lattice systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 352
EP  - 367
VL  - 169
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a2/
LA  - ru
ID  - TMF_2011_169_3_a2
ER  - 
%0 Journal Article
%A T. V. Dudnikova
%T Deriving hydrodynamic equations for lattice systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 352-367
%V 169
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a2/
%G ru
%F TMF_2011_169_3_a2
T. V. Dudnikova. Deriving hydrodynamic equations for lattice systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 3, pp. 352-367. http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a2/

[1] T. V. Dudnikova, H. Spohn, Markov Process. Relat. Fields, 12:4 (2006), 645–578, arXiv: math-ph/0505031 | MR | Zbl

[2] T. V. Dudnikova, J. Math. Phys., 51:8 (2010), 083301, 25 pp., arXiv: 0905.4806 | DOI | MR

[3] C. Boldrighini, R. L. Dobrushin, Yu. M. Sukhov, J. Statist. Phys., 31:3 (1983), 577–616 | DOI | MR

[4] R. L. Dobrushin, A. Pellegrinotti, Yu. M. Suhov, L. Triolo, J. Statist. Phys., 43:3–4 (1986), 571–607 | DOI | MR | Zbl

[5] R. L. Dobrushin, A. Pellegrinotti, Yu. M. Suhov, L. Triolo, J. Statist. Phys., 52:1–2 (1988), 423–439 | DOI | MR | Zbl

[6] R. L. Dobrushin, A. Pellegrinotti, Yu. M. Suhov, J. Statist. Phys., 61:1–2 (1990), 387–402 | DOI | MR

[7] S. Olla, R. S. R. Varadhan, H.-T. Yau, Commun. Math. Phys., 155:3 (1993), 523–560 | DOI | MR | Zbl

[8] R. Esposito, R. Marra, H.-T. Yau, Commun. Math. Phys., 182:2 (1996), 395–455 | DOI | MR | Zbl

[9] J. Quastel, H.-T. Yau, Ann. Math., 148:1 (1998), 51–108 | DOI | MR | Zbl

[10] A. De Masi, N. Ianiro, A. Pellegrinotti, E. Presutti, “A survey of the hydrodynamical behavior of many-particle systems”, Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics, Stud. Statist. Mech., XI, eds. J. L. Lebowitz, E. W. Montroll, North-Holland Phys. Publ., Amsderdam, 1984, 123–294 | MR | Zbl

[11] R. L. Dobrushin, Ya. G. Sinai, Yu. M. Sukhov, “Dinamicheskie sistemy statisticheskoi mekhaniki”, Dinamicheskie sistemy – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 2, VINITI, M., 1985, 235–284 | MR

[12] J. Fritz, An Introduction to the Theory of Hydrodynamic Limits, Lect. Math. Sci., 18, The Graduate School of Mathematics, Univ. Tokyo, Tokyo, 2001

[13] H. Spohn, Large Scale Dynamics of Interacting Particles, Texts Monogr. Phys., XI, Springer, Berlin, 1991 | Zbl

[14] C. Boldrighini, A. Pellegrinotti, L. Triolo, J. Statist. Phys., 30:1 (1983), 123–155 | DOI | MR

[15] T. V. Dudnikova, A. I. Komech, H. Spohn, J. Math. Phys., 44:6 (2003), 2596–2620, arXiv: math-ph/0210039 | DOI | MR | Zbl

[16] T. V. Dudnikova, A. I. Komech, N. Mauser, J. Statist. Phys., 114:3–4 (2004), 1035–1083, arXiv: math-ph/0211017 | DOI | MR | Zbl

[17] T. V. Dudnikova, A. I. Komech, H. Spohn, Markov Process. Relat. Fields, 8:1 (2002), 43–80, arXiv: math-ph/0508044 | MR | Zbl

[18] T. V. Dudnikova, A. I. Komech, Teoriya veroyatn. i ee primen., 50:4 (2005), 675–710 | DOI | MR | Zbl

[19] T. V. Dudnikova, A. I. Komech, Russ. J. Math. Phys., 12:3 (2005), 301–325, arXiv: math-ph/0508053 | MR | Zbl

[20] E. Ch. Titchmarsh, Vvedenie v teoriyu integralov Fure, Gostekhizdat, M., L., 1948 | MR | Zbl