Deriving hydrodynamic equations for lattice systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 3, pp. 352-367

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the dynamics of lattice systems in $\mathbb Z^d$, $d\ge1$. We assume that the initial data are random functions. We introduce the system of initial measures $\{\mu_0^{\varepsilon},\;\varepsilon>0\}$. The measures $\mu_0^{\varepsilon}$ are assumed to be locally homogeneous or “slowly changing” under spatial shifts of the order $o(\varepsilon^{-1})$ and inhomogeneous under shifts of the order $\varepsilon^{-1}$. Moreover, correlations of the measures $\mu_0^{\varepsilon}$ decrease uniformly in $\varepsilon$ at large distances. For all $\tau\in\mathbb R\setminus0$, $r\in\mathbb R^d$, and $\kappa>0$, we consider distributions of a random solution at the instants $t=\tau/\varepsilon^{\kappa}$ at points close to $[r/\varepsilon]\in\mathbb Z^d$. Our main goal is to study the asymptotic behavior of these distributions as $\varepsilon\to0$ and to derive the limit hydrodynamic equations of the Euler and Navier–Stokes type.
Keywords: harmonic crystal, Cauchy problem, random initial data, weak convergence of measures, Gaussian measure, Navier–Stokes equation.
Mots-clés : hydrodynamic limit, Euler equation
@article{TMF_2011_169_3_a2,
     author = {T. V. Dudnikova},
     title = {Deriving hydrodynamic equations for lattice systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {352--367},
     publisher = {mathdoc},
     volume = {169},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a2/}
}
TY  - JOUR
AU  - T. V. Dudnikova
TI  - Deriving hydrodynamic equations for lattice systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 352
EP  - 367
VL  - 169
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a2/
LA  - ru
ID  - TMF_2011_169_3_a2
ER  - 
%0 Journal Article
%A T. V. Dudnikova
%T Deriving hydrodynamic equations for lattice systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 352-367
%V 169
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a2/
%G ru
%F TMF_2011_169_3_a2
T. V. Dudnikova. Deriving hydrodynamic equations for lattice systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 3, pp. 352-367. http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a2/