Deriving hydrodynamic equations for lattice systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 3, pp. 352-367
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the dynamics of lattice systems in $\mathbb Z^d$, $d\ge1$. We assume that the initial data are random functions. We introduce the system of initial measures $\{\mu_0^{\varepsilon},\;\varepsilon>0\}$. The measures $\mu_0^{\varepsilon}$ are assumed to be locally homogeneous or “slowly changing” under spatial shifts of the order $o(\varepsilon^{-1})$ and inhomogeneous under shifts of the order $\varepsilon^{-1}$. Moreover, correlations of the measures $\mu_0^{\varepsilon}$ decrease uniformly in $\varepsilon$ at large distances. For all $\tau\in\mathbb R\setminus0$, $r\in\mathbb R^d$, and $\kappa>0$, we consider distributions of a random solution at the instants $t=\tau/\varepsilon^{\kappa}$ at points close to $[r/\varepsilon]\in\mathbb Z^d$. Our main goal is to study the asymptotic behavior of these distributions as $\varepsilon\to0$ and to derive the limit hydrodynamic equations of the Euler and Navier–Stokes type.
Keywords:
harmonic crystal, Cauchy problem, random initial data, weak convergence of measures, Gaussian measure, Navier–Stokes equation.
Mots-clés : hydrodynamic limit, Euler equation
Mots-clés : hydrodynamic limit, Euler equation
@article{TMF_2011_169_3_a2,
author = {T. V. Dudnikova},
title = {Deriving hydrodynamic equations for lattice systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {352--367},
publisher = {mathdoc},
volume = {169},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a2/}
}
T. V. Dudnikova. Deriving hydrodynamic equations for lattice systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 3, pp. 352-367. http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a2/