Existence and analyticity of eigenvalues of a two-channel molecular resonance model
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 3, pp. 341-351 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a family of operators $H_{\gamma\mu}(k)$, $k\in\mathbb T^d:= (-\pi,\pi]^d$, associated with the Hamiltonian of a system consisting of at most two particles on a $d$-dimensional lattice $\mathbb Z^d$, interacting via both a pair contact potential $(\mu>0)$ and creation and annihilation operators $(\gamma>0)$. We prove the existence of a unique eigenvalue of $H_{\gamma\mu}(k)$, $k\in\mathbb T^d$, or its absence depending on both the interaction parameters $\gamma,\mu\ge0$ and the system quasimomentum $k\in\mathbb T^d$. We show that the corresponding eigenvector is analytic. We establish that the eigenvalue and eigenvector are analytic functions of the quasimomentum $k\in\mathbb T^d$ in the existence domain $G\subset\mathbb T^d$.
Keywords: Hamiltonian, creation operator, eigenvalue, bound state, lattice.
@article{TMF_2011_169_3_a1,
     author = {S. N. Lakaev and Sh. M. Latipov},
     title = {Existence and analyticity of eigenvalues of a~two-channel molecular resonance model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {341--351},
     year = {2011},
     volume = {169},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a1/}
}
TY  - JOUR
AU  - S. N. Lakaev
AU  - Sh. M. Latipov
TI  - Existence and analyticity of eigenvalues of a two-channel molecular resonance model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 341
EP  - 351
VL  - 169
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a1/
LA  - ru
ID  - TMF_2011_169_3_a1
ER  - 
%0 Journal Article
%A S. N. Lakaev
%A Sh. M. Latipov
%T Existence and analyticity of eigenvalues of a two-channel molecular resonance model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 341-351
%V 169
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a1/
%G ru
%F TMF_2011_169_3_a1
S. N. Lakaev; Sh. M. Latipov. Existence and analyticity of eigenvalues of a two-channel molecular resonance model. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 3, pp. 341-351. http://geodesic.mathdoc.fr/item/TMF_2011_169_3_a1/

[1] A. K. Motovilov, W. Sandhas, V. B. Belyaev, J. Math. Phys., 42:6 (2001), 2490–2506 | DOI | MR | Zbl

[2] S. Albeverio, S. N. Lakaev, T. H. Rasulov, J. Stat. Phys., 127:2 (2007), 191–220 | DOI | MR | Zbl

[3] S. Albeverio, S. N. Lakaev, K. A. Makarov, Z. I. Muminov, Commun. Math. Phys., 262:1 (2006), 91–115, arXiv: math-ph/0501013 | DOI | MR | Zbl

[4] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | Zbl

[5] S. N. Lakaev, TMF, 91:1 (1992), 51–65 | DOI | MR