Gravity as a~field theory in flat space--time
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 285-296

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a formulation of gravity theory in the form of a field theory in a flat space–time with a number of dimensions greater than four. Configurations of the field under consideration describe the splitting of this space–time into a system of mutually noninteracting four-dimensional surfaces. Each of these surfaces can be considered our four-dimensional space–time. If the theory equations of motion are satisfied, then each surface satisfies the Regge–Teitelboim equations, whose solutions, in particular, are solutions of the Einstein equations. Matter fields then satisfy the standard equations, and their excitations propagate only along the surfaces. The formulation of the gravity theory under consideration could be useful in attempts to quantize it.
Keywords: gravity theory, embedding theory, field theory
Mots-clés : extra dimension.
@article{TMF_2011_169_2_a9,
     author = {S. A. Paston},
     title = {Gravity as a~field theory in flat space--time},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {285--296},
     publisher = {mathdoc},
     volume = {169},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a9/}
}
TY  - JOUR
AU  - S. A. Paston
TI  - Gravity as a~field theory in flat space--time
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 285
EP  - 296
VL  - 169
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a9/
LA  - ru
ID  - TMF_2011_169_2_a9
ER  - 
%0 Journal Article
%A S. A. Paston
%T Gravity as a~field theory in flat space--time
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 285-296
%V 169
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a9/
%G ru
%F TMF_2011_169_2_a9
S. A. Paston. Gravity as a~field theory in flat space--time. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 285-296. http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a9/