Gravity as a~field theory in flat space--time
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 285-296
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We propose a formulation of gravity theory in the form of a field theory in a flat space–time with a number of dimensions greater than four. Configurations of the field under consideration describe the splitting of this space–time into a system of mutually noninteracting four-dimensional surfaces. Each of these surfaces can be considered our four-dimensional space–time. If the theory equations of motion are satisfied, then each surface satisfies the Regge–Teitelboim equations, whose solutions, in particular, are solutions of the Einstein equations. Matter fields then satisfy the standard equations, and their excitations propagate only along the surfaces. The formulation of the gravity theory under consideration could be useful in attempts to quantize it.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
gravity theory, embedding theory, field theory
Mots-clés : extra dimension.
                    
                  
                
                
                Mots-clés : extra dimension.
@article{TMF_2011_169_2_a9,
     author = {S. A. Paston},
     title = {Gravity as a~field theory in flat space--time},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {285--296},
     publisher = {mathdoc},
     volume = {169},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a9/}
}
                      
                      
                    S. A. Paston. Gravity as a~field theory in flat space--time. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 285-296. http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a9/
