$N$-symmetric Chebyshev polynomials in a~composite model of a~generalized oscillator
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 229-240

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue to study a composite model of a generalized oscillator generated by an $N$-periodic Jacobi matrix. The foundation of the model is a system of orthogonal polynomials connected to this matrix for $N=3,4,5$. We show that such polynomials do not exist for $N\ge6$.
Keywords: generalized oscillator, Chebyshev polynomial, classical moment problem.
@article{TMF_2011_169_2_a4,
     author = {V. V. Borzov and E. V. Damaskinsky},
     title = {$N$-symmetric {Chebyshev} polynomials in a~composite model of a~generalized oscillator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {229--240},
     publisher = {mathdoc},
     volume = {169},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a4/}
}
TY  - JOUR
AU  - V. V. Borzov
AU  - E. V. Damaskinsky
TI  - $N$-symmetric Chebyshev polynomials in a~composite model of a~generalized oscillator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 229
EP  - 240
VL  - 169
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a4/
LA  - ru
ID  - TMF_2011_169_2_a4
ER  - 
%0 Journal Article
%A V. V. Borzov
%A E. V. Damaskinsky
%T $N$-symmetric Chebyshev polynomials in a~composite model of a~generalized oscillator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 229-240
%V 169
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a4/
%G ru
%F TMF_2011_169_2_a4
V. V. Borzov; E. V. Damaskinsky. $N$-symmetric Chebyshev polynomials in a~composite model of a~generalized oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 229-240. http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a4/