$N$-symmetric Chebyshev polynomials in a composite model of a generalized oscillator
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 229-240 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We continue to study a composite model of a generalized oscillator generated by an $N$-periodic Jacobi matrix. The foundation of the model is a system of orthogonal polynomials connected to this matrix for $N=3,4,5$. We show that such polynomials do not exist for $N\ge6$.
Keywords: generalized oscillator, Chebyshev polynomial, classical moment problem.
@article{TMF_2011_169_2_a4,
     author = {V. V. Borzov and E. V. Damaskinsky},
     title = {$N$-symmetric {Chebyshev} polynomials in a~composite model of a~generalized oscillator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {229--240},
     year = {2011},
     volume = {169},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a4/}
}
TY  - JOUR
AU  - V. V. Borzov
AU  - E. V. Damaskinsky
TI  - $N$-symmetric Chebyshev polynomials in a composite model of a generalized oscillator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 229
EP  - 240
VL  - 169
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a4/
LA  - ru
ID  - TMF_2011_169_2_a4
ER  - 
%0 Journal Article
%A V. V. Borzov
%A E. V. Damaskinsky
%T $N$-symmetric Chebyshev polynomials in a composite model of a generalized oscillator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 229-240
%V 169
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a4/
%G ru
%F TMF_2011_169_2_a4
V. V. Borzov; E. V. Damaskinsky. $N$-symmetric Chebyshev polynomials in a composite model of a generalized oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 229-240. http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a4/

[1] V. V. Borzov, E. V. Damaskinskii, “Sostavnaya model obobschennogo ostsillyatora. I”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 21, Zap. nauchn. sem. POMI, 374, POMI, SPb., 2010, 58–81 | MR | Zbl

[2] V. V. Borzov, E. V. Damaskinsky, “Composite model for generalized Chebyshev oscillator”, Days on Diffraction – 2010, Proceedings of the International Conference (Saint Petersburg, June 8–11, 2010), St.-Peterburg Univ., St.-Peterburg, 2009, 22

[3] V. V. Borzov, Integral Transf. and Special Functions, 12:2 (2001), 115–138 | DOI | MR | Zbl

[4] V. V. Borzov, TMF, 153:3 (2007), 363–380 | DOI | MR | Zbl

[5] V. V. Borzov, E. V. Damaskinsky, “Connection between representations of Heisenberg and $su(1, 1)$ algebras”, Days on Diffraction – 2009, Proceedings of the International Conference (Saint Petersburg, May 26–29, 2009), St.-Peterburg Univ., St.-Peterburg, 2009, 49–53

[6] T. I. Azizov, I. S. Iokhvidov, Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR