Recursive properties of branching and BGG resolution
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 218-228

Voir la notice de l'article provenant de la source Math-Net.Ru

Recurrence relations for branching coefficients are based on a certain decomposition of the singular element. We show that this decomposition can be used to construct parabolic Verma modules and to obtain the generalized Weyl–Verma formulas for characters. We also demonstrate that the branching coefficients determine the generalized Bernstein–Gelfand–Gelfand resolution.
Keywords: Lie algebra representation, branching rule, Bernstein–Gelfand–Gelfand resolution.
@article{TMF_2011_169_2_a3,
     author = {V. D. Lyakhovsky and A. A. Nazarov},
     title = {Recursive properties of branching and {BGG} resolution},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {218--228},
     publisher = {mathdoc},
     volume = {169},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a3/}
}
TY  - JOUR
AU  - V. D. Lyakhovsky
AU  - A. A. Nazarov
TI  - Recursive properties of branching and BGG resolution
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 218
EP  - 228
VL  - 169
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a3/
LA  - ru
ID  - TMF_2011_169_2_a3
ER  - 
%0 Journal Article
%A V. D. Lyakhovsky
%A A. A. Nazarov
%T Recursive properties of branching and BGG resolution
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 218-228
%V 169
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a3/
%G ru
%F TMF_2011_169_2_a3
V. D. Lyakhovsky; A. A. Nazarov. Recursive properties of branching and BGG resolution. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 218-228. http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a3/