Recursive properties of branching and BGG resolution
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 218-228
Voir la notice de l'article provenant de la source Math-Net.Ru
Recurrence relations for branching coefficients are based on a certain decomposition of the singular element. We show that this decomposition can be used to construct parabolic Verma modules and to obtain the generalized Weyl–Verma formulas for characters. We also demonstrate that the branching coefficients determine the generalized Bernstein–Gelfand–Gelfand resolution.
Keywords:
Lie algebra representation, branching rule, Bernstein–Gelfand–Gelfand resolution.
@article{TMF_2011_169_2_a3,
author = {V. D. Lyakhovsky and A. A. Nazarov},
title = {Recursive properties of branching and {BGG} resolution},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {218--228},
publisher = {mathdoc},
volume = {169},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a3/}
}
TY - JOUR AU - V. D. Lyakhovsky AU - A. A. Nazarov TI - Recursive properties of branching and BGG resolution JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 218 EP - 228 VL - 169 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a3/ LA - ru ID - TMF_2011_169_2_a3 ER -
V. D. Lyakhovsky; A. A. Nazarov. Recursive properties of branching and BGG resolution. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 218-228. http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a3/