Recursive properties of branching and BGG resolution
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 218-228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recurrence relations for branching coefficients are based on a certain decomposition of the singular element. We show that this decomposition can be used to construct parabolic Verma modules and to obtain the generalized Weyl–Verma formulas for characters. We also demonstrate that the branching coefficients determine the generalized Bernstein–Gelfand–Gelfand resolution.
Keywords: Lie algebra representation, branching rule, Bernstein–Gelfand–Gelfand resolution.
@article{TMF_2011_169_2_a3,
     author = {V. D. Lyakhovsky and A. A. Nazarov},
     title = {Recursive properties of branching and {BGG} resolution},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {218--228},
     year = {2011},
     volume = {169},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a3/}
}
TY  - JOUR
AU  - V. D. Lyakhovsky
AU  - A. A. Nazarov
TI  - Recursive properties of branching and BGG resolution
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 218
EP  - 228
VL  - 169
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a3/
LA  - ru
ID  - TMF_2011_169_2_a3
ER  - 
%0 Journal Article
%A V. D. Lyakhovsky
%A A. A. Nazarov
%T Recursive properties of branching and BGG resolution
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 218-228
%V 169
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a3/
%G ru
%F TMF_2011_169_2_a3
V. D. Lyakhovsky; A. A. Nazarov. Recursive properties of branching and BGG resolution. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 218-228. http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a3/

[1] P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Springer, New York, 1997 | MR | Zbl

[2] R. Coquereaux, G. Schieber, J. Phys.: Conference Series, 103:1 (2008), 012006, 24 pp., arXiv: 0710.1397 | DOI

[3] J. Lepowsky, J. Algebra, 49:2 (1977), 496–511 | DOI | MR | Zbl

[4] I. N. Bernshtein, I. M. Gelfand, S. I. Gelfand, Funkts. analiz i ego pril., 10:2 (1976), 1–8 | DOI | MR | Zbl

[5] S. É. Derkachov, A. N. Manashov, Lett. Math. Phys., 97 (2011), 185–202, arXiv: 1008.4734 | DOI | MR | Zbl

[6] S. É. Derkachov, A. N. Manashov, J. Phys. A, 42:7 (2009), 075204, 35 pp., arXiv: 0809.2050 | DOI | MR | Zbl

[7] V. D. Lyakhovsky, A. A. Nazarov, J. Phys. A, 44:7 (2011), 075205, 20 pp., arXiv: 1007.0318 | DOI | MR | Zbl

[8] M. Ilin, P. Kulish, V. Lyakhovskii, Algebra i analiz, 21:2 (2009), 52–70, arXiv: 0812.2124 | DOI | MR | Zbl

[9] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 9, Springer, New York, 1997 | MR | Zbl

[10] I. Bernstein, I. M. Gelfand, S. I. Gelfand, “Differential operators on principal affine space and study of $\mathfrak{g}$-modules”, Lie Groups and Their Representations, Proceeding of the Summer School, Bolyai János Math. Soc. (Budapest, 1971), ed. I. M. Gelfand, Halsted Press, New York, 1975, 21–64

[11] I. N. Bernshtein, I. M. Gelfand, S. I. Gelfand, Funkts. analiz i ego pril., 5:1 (1971), 1–9 | DOI | MR | Zbl

[12] J. E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category $\mathcal O$, AMS, Providence, RI, 2008 | MR | Zbl

[13] G. J. Heckman, Invent. Math., 67 (1982), 333–356 | DOI | MR | Zbl

[14] H. D. Doebner, O. Melsheimer, Nouvo Cimento A, 49:2 (1967), 306–311 | DOI | MR | Zbl

[15] A. Nijenhuis, R. W. Richardson Jr., Bull. Amer. Math. Soc., 72 (1966), 1–29 | DOI | MR | Zbl