Generalized relativistic kinematics
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 323-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a method for deforming an extended Galilei algebra that leads to a nonstandard realization of the Poincaré group with the Fock–Lorentz linear fractional transformations. The invariant parameter in these transformations has the dimension of length. Combining this deformation with the standard one (with an invariant velocity $c$) leads to the algebra of the symmetry group of the anti-de Sitter space in Beltrami coordinates. In this case, the action for free point particles contains the dimensional constants $R$ and $c$. The limit transitions lead to the ordinary ($R\to\infty$) or alternative ($c\to\infty$) but nevertheless relativistic kinematics.
Keywords: principle of relativity, relativistic kinematics, Galilei algebra, anti-de Sitter space.
Mots-clés : Poincaré group
@article{TMF_2011_169_2_a12,
     author = {S. N. Manida},
     title = {Generalized relativistic kinematics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--336},
     year = {2011},
     volume = {169},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a12/}
}
TY  - JOUR
AU  - S. N. Manida
TI  - Generalized relativistic kinematics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 323
EP  - 336
VL  - 169
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a12/
LA  - ru
ID  - TMF_2011_169_2_a12
ER  - 
%0 Journal Article
%A S. N. Manida
%T Generalized relativistic kinematics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 323-336
%V 169
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a12/
%G ru
%F TMF_2011_169_2_a12
S. N. Manida. Generalized relativistic kinematics. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 323-336. http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a12/

[1] G. Galilei, “Dialog o dvukh glavneishikh sistemakh mira – ptolomeevoi i kopernikovoi”, Izbrannye trudy, v. 1, Nauka, M., 1964, 109–586

[2] W. von Ignatowsky, Phys. Z., 11 (1910), 972–976

[3] W. von Ignatowsky, Arch. Math. Phys., 17 (1910), 1–24 | DOI | Zbl

[4] P. Frank, H. Rothe, Ann. Phys., 339:5 (1911), 825–855 | DOI

[5] V. A. Fok, Teoriya prostranstva, vremeni i tyagoteniya, Fizmatgiz, M., 1961

[6] S. N. Manida, Fock-Lorentz transformations and time-varying speed of light, arXiv: gr-qc/9905046

[7] S. N. Manida, Vestn. SPbGU. Ser. 4: Fizika, khimiya, 2:12 (2001), 3–17

[8] S. S. Stepanov, Fundamental physical constants and the principle of parametric incompleteness, arXiv: physics/9909009

[9] S. S. Stepanov, Phys. Rev. D, 62:2 (2000), 023507, 7 pp., arXiv: astro-ph/9909311 | DOI | MR

[10] J. Magueijo, Phys. Rev. D, 62:10 (2000), 103521, 15 pp., arXiv: gr-qc/0007036 | DOI

[11] O. Jahn, V. V. Sreedhar, Am. J. Phys., 69:10 (2001), 1039–1043, arXiv: math-ph/0102011 | DOI | MR | Zbl

[12] J. Magueijo, L. Smolin, Phys. Rev. Lett., 88:19 (2002), 190403, arXiv: hep-th/0112090 | DOI

[13] H.-Y. Guo, Sci. China Ser. A, 51:4 (2008), 568–603 | DOI | MR | Zbl

[14] H.-Y. Guo, C.-G. Huang, Y. Tian, Z. Xu, B. Zhou, On de Sitter invariant special relativity and cosmological constant as origin of inertia, arXiv: hep-th/0405137

[15] H.-Y. Guo, C.-G. Huang, H.-T. Wu, B. Zhou, The principle of relativity, kinematics and algebraic relations, arXiv: 0812.0871

[16] H.-Y. Guo, H.-T. Wu, B. Zhou, Phys. Lett. B, 670:4–5 (2009), 437–441, arXiv: 0809.3562 | DOI | MR

[17] H.-Y. Guo, C.-G. Huang, Y. Tian, Z. Xu, B. Zhou, Class. Quant. Grav., 24:16 (2007), 4009–4035, arXiv: gr-qc/0703078 | DOI | Zbl

[18] H.-Y. Guo, C.-G. Huang, Y. Tian, Z. Xu, B. Zhou, Front. Phys. China, 2:3 (2007), 358–363, arXiv: hep-th/0607016 | DOI

[19] H.-Y. Guo, The Beltrami model of De Sitter space: from Snyder's quantized space-time to de Sitter invariant relativity, arXiv: hep-th/0607017

[20] L. O'Raifeartaigh, V. V. Sreedhar, Ann. Phys., 293:2 (2001), 215–227, arXiv: hep-th/0007199 | DOI | MR | Zbl

[21] U. Niederer, Helv. Phys. Acta, 45:5 (1972), 802–810 | MR

[22] C. R. Hagen, Phys. Rev. D, 5:2 (1972), 377–388 | DOI

[23] R. Jackiw, Phys. Today, 25:1 (1972), 23–29 | DOI

[24] R. Jackiw, Ann. Phys., 129 (1980), 183–200 | DOI | MR

[25] C. Duval, P. A. Horvathy, Conformal Galilei groups, Veronese curves, and Newton–Hooke spacetimes, arXiv: 1104.1502 | MR

[26] R. Aldrovandi, J. G. Pereira, A Second Poincaré Group, arXiv: gr-qc/9809061

[27] E. Inonu, E. P. Wigner, Proc. Natl. Acad. Sci. U.S.A., 39:6 (1953), 510–524 | DOI | MR | Zbl

[28] E. Inonu, E. P. Wigner, Proc. Natl. Acad. Sci. U.S.A., 40 (1954), 119–121 | DOI | MR | Zbl