Generalized relativistic kinematics
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 323-336

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a method for deforming an extended Galilei algebra that leads to a nonstandard realization of the Poincaré group with the Fock–Lorentz linear fractional transformations. The invariant parameter in these transformations has the dimension of length. Combining this deformation with the standard one (with an invariant velocity $c$) leads to the algebra of the symmetry group of the anti-de Sitter space in Beltrami coordinates. In this case, the action for free point particles contains the dimensional constants $R$ and $c$. The limit transitions lead to the ordinary ($R\to\infty$) or alternative ($c\to\infty$) but nevertheless relativistic kinematics.
Keywords: principle of relativity, relativistic kinematics, Galilei algebra, Poincaré group, anti-de Sitter space.
@article{TMF_2011_169_2_a12,
     author = {S. N. Manida},
     title = {Generalized relativistic kinematics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--336},
     publisher = {mathdoc},
     volume = {169},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a12/}
}
TY  - JOUR
AU  - S. N. Manida
TI  - Generalized relativistic kinematics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 323
EP  - 336
VL  - 169
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a12/
LA  - ru
ID  - TMF_2011_169_2_a12
ER  - 
%0 Journal Article
%A S. N. Manida
%T Generalized relativistic kinematics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 323-336
%V 169
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a12/
%G ru
%F TMF_2011_169_2_a12
S. N. Manida. Generalized relativistic kinematics. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 323-336. http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a12/