Heisenberg doubles of quantized Poincaré algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 297-306 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We briefly analyze some general questions concerning the twist deformation of the Heisenberg double. We reconsider Heisenberg doubles based on quantized Poincaré (Hopf) algebras as illustrative examples.
Keywords: Hopf algebra, quantum deformation, smash product, Heisenberg double
Mots-clés : quantum Poincaré.
@article{TMF_2011_169_2_a10,
     author = {A. Borowiec and A. Pachol},
     title = {Heisenberg doubles of quantized {Poincar\'e} algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {297--306},
     year = {2011},
     volume = {169},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a10/}
}
TY  - JOUR
AU  - A. Borowiec
AU  - A. Pachol
TI  - Heisenberg doubles of quantized Poincaré algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 297
EP  - 306
VL  - 169
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a10/
LA  - ru
ID  - TMF_2011_169_2_a10
ER  - 
%0 Journal Article
%A A. Borowiec
%A A. Pachol
%T Heisenberg doubles of quantized Poincaré algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 297-306
%V 169
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a10/
%G ru
%F TMF_2011_169_2_a10
A. Borowiec; A. Pachol. Heisenberg doubles of quantized Poincaré algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 297-306. http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a10/

[1] A. Borowiec, A. Pachoł, SIGMA, 6 (2010), 086, 31 pp., arXiv: 1005.4429 | DOI | MR | Zbl

[2] J. Lukierski, A. Nowicki, “Heisenberg double description of kappa-Poincare algebra and kappa-deformed phase space”, Proceeding of the XXI International Colloquium on Group Theoretical Methods in Physics, Group 24: Physical and mathematical aspects of symmetries (Goslar, Germany, July 15–20, 1996), eds. V. K. Dobrev, H. D. Doebner, Heron Press, Sofia, 1997, 186–192, arXiv: ; G. Amelino-Camelia, J. Lukierski, A. Nowicki, Phys. Atomic Nuclei, 61:11 (1998), 1811–1815, arXiv: ; P. Kosinski, P. Maslanka, The duality between $\kappa$-Poincaré algebra and $\kappa$-Poincaré group, arXiv: ; S. Giller, C. Gonera, P. Kosiński, P. Maślanka, Acta Phys. Pol. B, 27:9 (1996), 2171–2177 ; P. Zaugg, J. Phys. A, 28:9 (1995), 2589–2604, arXiv: q-alg/9702003hep-th/9706031hep-th/9411033hep-th/9409100 | MR | MR | Zbl | DOI | MR | Zbl

[3] S. Doplicher, K. Fredenhagen, J. E. Roberts, Phys. Lett. B, 331:1–2 (1994), 39–44 ; Commun. Math. Phys., 172:1 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | DOI | MR | Zbl

[4] P. Aschieri, C. Blohmann, M. Dimitrijević, F. Meyer, P. Schupp, J. Wess, Classical Quantum Gravity, 22:17 (2005), 3511–3532, arXiv: hep-th/0504183 | DOI | MR | Zbl

[5] P. Aschieri, M. Dimitrijević, F. Meyer, Classical Quantum Gravity, 23:6 (2006), 1883–1911, arXiv: hep-th/0510059 | DOI | MR | Zbl

[6] V. Drinfeld, “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, California, USA, August 3–11, 1986), AMS, Providence, RI, 1987, 798–820 ; В. Г. Дринфельд, Докл. АН СССР, 283:5 (1985), 1060–1064 | MR | MR | Zbl

[7] V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[8] C. Kassel, Quantum groups, Graduate Texts in Mathematics, 155, Springer, New York, 1995 | DOI | MR | Zbl

[9] C. Blohmann, J. Math. Phys., 44:10 (2003), 4736–4755, arXiv: ; “Realization of $q$ deformed space-time as star product by a Drinfeld twist”, Proceedings of the 24th International Colloquium on Group Theoretical Methods in Physics., Group 24: Physical and mathematical aspects of symmetries (Paris, France, July 15–20, 2002), IOP Conference Series, 173, eds. J. P. Gazeau, R. Kerner, J. P. Antoine, S. Metens, J. Y. Thibon, IOP, Bristol, UK, 2003, 443–446, arXiv: ; N. Aizawa, R. Chakrabarti, J. Math. Phys., 45:4 (2004), 1623–1638, arXiv: math.QA/0209180math.QA/0402199math/0311161 | DOI | MR | Zbl | DOI | MR | Zbl

[10] S. Zakrzewski, J. Phys. A, 27:6 (1994), 2075–2082 | DOI | MR | Zbl

[11] S. Majid, H. Ruegg, Phys. Lett. B, 334:3–4 (1994), 348–354, arXiv: hep-th/9405107 | DOI | MR | Zbl

[12] J. Lukierski, A. Nowicki, H. Ruegg, V. N. Tolstoy, Phys. Lett. B, 264:3–4 (1991), 331–338 ; J. Lukierski, H. Ruegg, Phys. Lett. B, 329:2–3 (1994), 189–194, arXiv: hep-th/9310117 | DOI | MR | DOI | MR

[13] J. Lukierski, H. Ruegg, W. J. Zakrzewski, Ann. Physics, 243:1 (1995), 90–116, arXiv: hep-th/9312153 | DOI | MR | Zbl

[14] A. Klimyk, K. Schmudgen, Quantum Groups and Their Representations, Texts and Monographs in Physics, Springer, Berlin, 1997 | MR | Zbl

[15] R. J. Blattner, M. Cohen, S. Montgomery, Trans. Amer. Math. Soc., 298 (1986), 671–711 ; R. J. Blattner, S. Montgomery, Pacific J. Math., 137:1 (1989), 37–54 ; Y. Doi, M. Takeuchi, Commun. Algebra, 14:5 (1986), 801–817 ; Y. Doi, Commun. Algebra, 17:12 (1989), 3053–3085 ; M. Cohen, D. Fischman, S. Montgomery, J. Algebra, 133:2 (1990), 351–372 ; A. Borowiec, W. Marcinek, J. Math. Phys., 41:10 (2000), 6959–6975, arXiv: math-ph/0007031 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[16] S. Majid, “Cross product quantisation, nonabelian cohomology and twisting of Hopf algebras”, Generalized Symmetries in Physics (Clausthal, 1993), World Sci. Publ., River Edge, NJ, 1994, 13–41, arXiv: hep-th/9311184 | MR

[17] P. Kulish, A. Mudrov, Lett. Math. Phys., 95:3 (2011), 233-247, arXiv: 1011.4758 | DOI | MR | Zbl

[18] J.-H. Lu, Duke Math. J., 74:3 (1994), 763–776 ; R. M. Kashaev, Алгебра и анализ, 8:4 (1996), 63–74, arXiv: ; Z. Skoda, Heisenberg double versus deformed derivatives, arXiv: q-alg/95030050909.3769 | DOI | MR | Zbl | MR | Zbl | MR

[19] M. Chaichian, P. P Kulish, K. Nishijima, A. Tureanu, Phys. Lett. B, 604:1–2 (2004), 98–102, arXiv: hep-th/0408069 | DOI | MR | Zbl

[20] M. Chaichian, P. Prešnajder, A. Tureanu, Phys. Rev. Lett., 94:15 (2005), 151602, 4 pp., arXiv: hep-th/0409096 | DOI

[21] A. Borowiec, A. Pachoł, J. Phys. A, 43:4 (2010), 045203, 10 pp., arXiv: 0903.5251 | DOI | MR | Zbl

[22] P. Podles, S. L. Woronowicz, Commun. Math. Phys., 178:1 (1996), 61–82, arXiv: hep-th/9412059 | DOI | MR | Zbl