Mots-clés : quantum Poincaré.
@article{TMF_2011_169_2_a10,
author = {A. Borowiec and A. Pachol},
title = {Heisenberg doubles of quantized {Poincar\'e} algebras},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {297--306},
year = {2011},
volume = {169},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a10/}
}
A. Borowiec; A. Pachol. Heisenberg doubles of quantized Poincaré algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 297-306. http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a10/
[1] A. Borowiec, A. Pachoł, SIGMA, 6 (2010), 086, 31 pp., arXiv: 1005.4429 | DOI | MR | Zbl
[2] J. Lukierski, A. Nowicki, “Heisenberg double description of kappa-Poincare algebra and kappa-deformed phase space”, Proceeding of the XXI International Colloquium on Group Theoretical Methods in Physics, Group 24: Physical and mathematical aspects of symmetries (Goslar, Germany, July 15–20, 1996), eds. V. K. Dobrev, H. D. Doebner, Heron Press, Sofia, 1997, 186–192, arXiv: ; G. Amelino-Camelia, J. Lukierski, A. Nowicki, Phys. Atomic Nuclei, 61:11 (1998), 1811–1815, arXiv: ; P. Kosinski, P. Maslanka, The duality between $\kappa$-Poincaré algebra and $\kappa$-Poincaré group, arXiv: ; S. Giller, C. Gonera, P. Kosiński, P. Maślanka, Acta Phys. Pol. B, 27:9 (1996), 2171–2177 ; P. Zaugg, J. Phys. A, 28:9 (1995), 2589–2604, arXiv: q-alg/9702003hep-th/9706031hep-th/9411033hep-th/9409100 | MR | MR | Zbl | DOI | MR | Zbl
[3] S. Doplicher, K. Fredenhagen, J. E. Roberts, Phys. Lett. B, 331:1–2 (1994), 39–44 ; Commun. Math. Phys., 172:1 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | DOI | MR | Zbl
[4] P. Aschieri, C. Blohmann, M. Dimitrijević, F. Meyer, P. Schupp, J. Wess, Classical Quantum Gravity, 22:17 (2005), 3511–3532, arXiv: hep-th/0504183 | DOI | MR | Zbl
[5] P. Aschieri, M. Dimitrijević, F. Meyer, Classical Quantum Gravity, 23:6 (2006), 1883–1911, arXiv: hep-th/0510059 | DOI | MR | Zbl
[6] V. Drinfeld, “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, California, USA, August 3–11, 1986), AMS, Providence, RI, 1987, 798–820 ; В. Г. Дринфельд, Докл. АН СССР, 283:5 (1985), 1060–1064 | MR | MR | Zbl
[7] V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[8] C. Kassel, Quantum groups, Graduate Texts in Mathematics, 155, Springer, New York, 1995 | DOI | MR | Zbl
[9] C. Blohmann, J. Math. Phys., 44:10 (2003), 4736–4755, arXiv: ; “Realization of $q$ deformed space-time as star product by a Drinfeld twist”, Proceedings of the 24th International Colloquium on Group Theoretical Methods in Physics., Group 24: Physical and mathematical aspects of symmetries (Paris, France, July 15–20, 2002), IOP Conference Series, 173, eds. J. P. Gazeau, R. Kerner, J. P. Antoine, S. Metens, J. Y. Thibon, IOP, Bristol, UK, 2003, 443–446, arXiv: ; N. Aizawa, R. Chakrabarti, J. Math. Phys., 45:4 (2004), 1623–1638, arXiv: math.QA/0209180math.QA/0402199math/0311161 | DOI | MR | Zbl | DOI | MR | Zbl
[10] S. Zakrzewski, J. Phys. A, 27:6 (1994), 2075–2082 | DOI | MR | Zbl
[11] S. Majid, H. Ruegg, Phys. Lett. B, 334:3–4 (1994), 348–354, arXiv: hep-th/9405107 | DOI | MR | Zbl
[12] J. Lukierski, A. Nowicki, H. Ruegg, V. N. Tolstoy, Phys. Lett. B, 264:3–4 (1991), 331–338 ; J. Lukierski, H. Ruegg, Phys. Lett. B, 329:2–3 (1994), 189–194, arXiv: hep-th/9310117 | DOI | MR | DOI | MR
[13] J. Lukierski, H. Ruegg, W. J. Zakrzewski, Ann. Physics, 243:1 (1995), 90–116, arXiv: hep-th/9312153 | DOI | MR | Zbl
[14] A. Klimyk, K. Schmudgen, Quantum Groups and Their Representations, Texts and Monographs in Physics, Springer, Berlin, 1997 | MR | Zbl
[15] R. J. Blattner, M. Cohen, S. Montgomery, Trans. Amer. Math. Soc., 298 (1986), 671–711 ; R. J. Blattner, S. Montgomery, Pacific J. Math., 137:1 (1989), 37–54 ; Y. Doi, M. Takeuchi, Commun. Algebra, 14:5 (1986), 801–817 ; Y. Doi, Commun. Algebra, 17:12 (1989), 3053–3085 ; M. Cohen, D. Fischman, S. Montgomery, J. Algebra, 133:2 (1990), 351–372 ; A. Borowiec, W. Marcinek, J. Math. Phys., 41:10 (2000), 6959–6975, arXiv: math-ph/0007031 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[16] S. Majid, “Cross product quantisation, nonabelian cohomology and twisting of Hopf algebras”, Generalized Symmetries in Physics (Clausthal, 1993), World Sci. Publ., River Edge, NJ, 1994, 13–41, arXiv: hep-th/9311184 | MR
[17] P. Kulish, A. Mudrov, Lett. Math. Phys., 95:3 (2011), 233-247, arXiv: 1011.4758 | DOI | MR | Zbl
[18] J.-H. Lu, Duke Math. J., 74:3 (1994), 763–776 ; R. M. Kashaev, Алгебра и анализ, 8:4 (1996), 63–74, arXiv: ; Z. Skoda, Heisenberg double versus deformed derivatives, arXiv: q-alg/95030050909.3769 | DOI | MR | Zbl | MR | Zbl | MR
[19] M. Chaichian, P. P Kulish, K. Nishijima, A. Tureanu, Phys. Lett. B, 604:1–2 (2004), 98–102, arXiv: hep-th/0408069 | DOI | MR | Zbl
[20] M. Chaichian, P. Prešnajder, A. Tureanu, Phys. Rev. Lett., 94:15 (2005), 151602, 4 pp., arXiv: hep-th/0409096 | DOI
[21] A. Borowiec, A. Pachoł, J. Phys. A, 43:4 (2010), 045203, 10 pp., arXiv: 0903.5251 | DOI | MR | Zbl
[22] P. Podles, S. L. Woronowicz, Commun. Math. Phys., 178:1 (1996), 61–82, arXiv: hep-th/9412059 | DOI | MR | Zbl