Mots-clés : $R$-matrix
@article{TMF_2011_169_2_a1,
author = {J. Avan and P. P. Kulish and G. Rollet},
title = {Reflection $K$-matrices related to {Temperley{\textendash}Lieb} $R$-matrices},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {194--203},
year = {2011},
volume = {169},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a1/}
}
TY - JOUR AU - J. Avan AU - P. P. Kulish AU - G. Rollet TI - Reflection $K$-matrices related to Temperley–Lieb $R$-matrices JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 194 EP - 203 VL - 169 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a1/ LA - ru ID - TMF_2011_169_2_a1 ER -
J. Avan; P. P. Kulish; G. Rollet. Reflection $K$-matrices related to Temperley–Lieb $R$-matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 194-203. http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a1/
[1] H. N. V. Temperley, E. H. Lieb, Proc. Roy. Soc. Lond. A, 322:1549 (1971), 251–280 | DOI | MR | Zbl
[2] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | MR | Zbl
[3] P. Martin, Potts Models and Related Problems in Statistical Mechanics, Series on Advances in Statistical Mechanics, 5, World Scientific, Teaneck, NJ, 1991 | MR | Zbl
[4] P. P. Kulish, J. Phys. A, 36:38 (2003), L489–L493 | DOI | MR | Zbl
[5] E. K. Sklyanin, J. Phys. A, 21:10 (1988), 2375–2389 | DOI | MR | Zbl
[6] P. P. Kulish, N. Manojlovic, Z. Nagy, J. Math. Phys., 49:2 (2008), 023510, 9 pp., arXiv: 0712.3154 | DOI | MR | Zbl
[7] L. A. Takhtadzhyan, L. D. Faddeev, UMN, 34:5(209) (1979), 13–63 | DOI | MR
[8] L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models”, Quantum Symmetries. Proceedings of the Les Houches Summer School. Session LXIV (Les Houches, France, August 1 – September 8, 1995), eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North Holland, Amsterdam, 1998, 149–219 | MR | Zbl
[9] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform methods recent developments”, Integrable Quantum Field Theories, Lecture Notes in Physics, 151, eds. J. Hietarinta, C. Montonen, Springer, Berlin, New York, 1982, 61–119 | DOI | MR
[10] V. Chari, A. N. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[11] D. Levy, P. Martin, J. Phys. A, 27:14 (1994), L521–L526 | DOI | MR | Zbl
[12] A. Doikou, Nucl. Phys. B, 725:3 (2005), 493–530, arXiv: math-ph/0409060 | DOI | MR | Zbl
[13] P. P. Kulish, A. I. Mudrov, Lett. Math. Phys., 75:2 (2006), 151–170, arXiv: math/0508289 | DOI | MR | Zbl
[14] P. P. Kulish, N. Manoilovich, Z. Nad, TMF, 163:2 (2010), 288–298 | DOI | MR | Zbl
[15] A. Lima-Santos, On the ${\cal{U}}_{q}[sl(2)]$ Temperley-Lieb reflection matrices, arXiv: 1011.2891 | MR
[16] S. Ariki, “Lectures on cyclotomic Hecke algebras”, Quantum Groups and Lie Theory, London Math. Soc. Lecture Notes Ser., 290, ed. A. Pressley, 2002, 1–22, arXiv: math/9908005 | MR
[17] L. Mezincescu, R. I. Nepomechie, Internat. J. Modern Phys. A, 6:29 (1991), 5231–5248, arXiv: ; Addendum, 7:22 (1992), 5657–5659 hep-th/9206047 | DOI | MR | Zbl | DOI | MR