Ising limit of a Heisenberg $XXZ$ magnet and some temperature correlation functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 179-193 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Heisenberg spin-$1/2$ $XXZ$ magnet in the case where the anisotropy parameter tends to infinity (the so-called Ising limit). We find the temperature correlation function of a ferromagnetic string above the ground state. Our approach to calculating correlation functions is based on expressing the wave function in the considered limit in terms of Schur symmetric functions. We show that the asymptotic amplitude of the above correlation function at low temperatures is proportional to the squared number of strict plane partitions in a box.
Keywords: Heisenberg magnet, Ising limit, correlation function.
@article{TMF_2011_169_2_a0,
     author = {N. M. Bogolyubov and K. L. Malyshev},
     title = {Ising limit of {a~Heisenberg} $XXZ$ magnet and some temperature correlation functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--193},
     year = {2011},
     volume = {169},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a0/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
AU  - K. L. Malyshev
TI  - Ising limit of a Heisenberg $XXZ$ magnet and some temperature correlation functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2011
SP  - 179
EP  - 193
VL  - 169
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a0/
LA  - ru
ID  - TMF_2011_169_2_a0
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%A K. L. Malyshev
%T Ising limit of a Heisenberg $XXZ$ magnet and some temperature correlation functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2011
%P 179-193
%V 169
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a0/
%G ru
%F TMF_2011_169_2_a0
N. M. Bogolyubov; K. L. Malyshev. Ising limit of a Heisenberg $XXZ$ magnet and some temperature correlation functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 179-193. http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a0/

[1] A. N. Vasilev, Funktsionalnye metody v kvantovoi teorii polya i statistike, Izd-vo LGU, L., 1976 | Zbl

[2] N. M. Bogolyubov, V. F. Brattsev, A. N. Vasilev, A. L. Korzhenevskii, R. A. Radzhabov, TMF, 26:3 (1976), 341–351 | DOI

[3] C. N. Yang, C. P. Yang, Phys. Rev., 151:1 (1966), 258–264 | DOI

[4] M. Goden, Volnovaya funktsiya Bete, Mir, M., 1987 | MR

[5] L. D. Faddeev, Kvantovye vpolne integriruemye modeli teorii polya, Preprint LOMI P-2-79, LOMI, L., 1979 ; L. D. Faddeev, “Quantum completely integrable models in field theory”, 40 Years in Mathematical Physics, World Sci. Ser. 20th Century Math., 2, World Sci., River Edge, NJ, 1995, 187–235 | Zbl | DOI | MR

[6] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992 | MR | Zbl

[7] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Monogr. Math. Phys., XIII, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[8] V. E. Korepin, Commun. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl

[9] A. G. Izergin, V. E. Korepin, Commun. Math. Phys., 99:2 (1985), 271–302 | DOI | MR | Zbl

[10] N. Kitanine, J.-M. Maillet, V. Terras, Nucl. Phys. B, 554:3 (1999), 647–678, arXiv: math-ph/9807020 | DOI | MR | Zbl

[11] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, Nucl. Phys. B, 642:3 (2002), 433–455 | DOI | MR | Zbl

[12] I. G. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR | Zbl

[13] M. E. Fisher, J. Statist. Phys., 34:5–6 (1984), 667–729 | DOI | MR

[14] T. Nagao, P. J. Forrester, Nucl. Phys. B, 620:3 (2002), 551–565, arXiv: cond-mat/0107221 | DOI | MR | Zbl

[15] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, J. Phys. A, 33:48 (2000), 8835–8866, arXiv: cond-mat/0006367 | DOI | MR | Zbl

[16] M. Katori, H. Tanemura, T. Nagao, N. Komatsuda, Phys. Rev. E, 68:2 (2003), 021112, 16 pp., arXiv: cond-mat/0303573 | DOI | MR

[17] G. Schehr, S. N. Majumdar, A. Comtet, J. Randon-Furling, Phys. Rev. Lett., 101:15 (2008), 150601, 4 pp., arXiv: 0807.0522 | DOI | MR | Zbl

[18] D. M. Bressoud, Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture, MAA Spectrum Series, XV, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[19] N. M. Bogoliubov, J. Phys. A, 38:43 (2005), 9415–9430, arXiv: cond-mat/0503748 | DOI | MR | Zbl

[20] N. M. Bogolyubov, “$XX0$ tsepochka Geizenberga i sluchainye bluzhdaniya”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody.XII, Zap. nauchn. sem. POMI, 325, POMI, SPb., 2005, 13–27 | DOI | MR | Zbl

[21] N. M. Bogoliubov, C. Malyshev, “A path integration approach to the correlators of $XY$ Heisenberg magnet and random walks”, Proceeding of the IX International Conference “Path Integrals. New Trends and Perspectives” (Dresden, Germany, September 23–28, 2007), eds. W. Janke, A. Pelster, World Sci. Publ., Hackensack, NJ, 2008, 508–513, arXiv: 0810.4816 | DOI | MR | Zbl

[22] N. M. Bogolyubov, TMF, 155:1 (2008), 25–38 | DOI | MR | Zbl

[23] N. M. Bogolyubov, K. L. Malyshev, TMF, 159:2 (2009), 179–193, arXiv: 0903.3227 | DOI | MR

[24] N. M. Bogolyubov, K. Malyshev, Algebra i analiz, 22:3 (2010), 32–59 | MR

[25] E. Lieb, T. Schultz, D. Mattis, Ann. Phys., 16:3 (1961), 407–466 | DOI | MR | Zbl

[26] Th. Niemeijer, Physica, 36:3 (1967), 377–419 ; 39:3 (1968), 313–326 | DOI | DOI

[27] F. Colomo, A. G. Izergin, V. E. Korepin, V. Tognetti, TMF, 94:1 (1993), 19–51 | DOI | MR

[28] K. L. Malyshev, TMF, 136:2 (2003), 285–298 | DOI | MR | Zbl

[29] F. C. Alcaraz, R. Z. Bariev, “An exactly solvable constrained $XXZ$ chain”, Statistical Physics on the Eve of the 21st Century, Ser. Adv. Statist. Mech., 14, eds. M. T. Batchelor, L. T. Wille, World Sci., Singapore, 1999, 412–424, arXiv: cond-mat/9904042 | MR

[30] N. I. Abarenkova, A. G. Pronko, TMF, 131:2 (2002), 288–303 | DOI | MR | Zbl

[31] A. J. A. James, W. D. Goetze, F. H. L. Essler, Phys. Rev. B, 79:21 (2009), 214408, 20 pp., arXiv: 0902.2402 | DOI

[32] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[33] L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, UMN, 34:5(209) (1979), 13–63 | DOI | MR

[34] E. H. Lieb, F. Y. Wu, “Two dimensional ferroelectric models”, Phase Transitions and Critical Phenomena, v. 1, eds. C. Domb, M. Green, Academic Press, London, 1972, 331–490 | MR

[35] V. O. Tarasov, L. A. Takhtadzhyan, L. D. Faddeev, TMF, 57:2 (1983), 163–181 | DOI | MR

[36] M. L. Mehta, Random Matrices, Academic Press, Boston, MA, 1991 | MR | Zbl

[37] N. Bogoliubov, J. Timonen, Phil. Trans. R. Soc. A, 369 (2011), 1319–1333 | DOI | MR | Zbl