@article{TMF_2011_169_2_a0,
author = {N. M. Bogolyubov and K. L. Malyshev},
title = {Ising limit of {a~Heisenberg} $XXZ$ magnet and some temperature correlation functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {179--193},
year = {2011},
volume = {169},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a0/}
}
TY - JOUR AU - N. M. Bogolyubov AU - K. L. Malyshev TI - Ising limit of a Heisenberg $XXZ$ magnet and some temperature correlation functions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 179 EP - 193 VL - 169 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a0/ LA - ru ID - TMF_2011_169_2_a0 ER -
N. M. Bogolyubov; K. L. Malyshev. Ising limit of a Heisenberg $XXZ$ magnet and some temperature correlation functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 179-193. http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a0/
[1] A. N. Vasilev, Funktsionalnye metody v kvantovoi teorii polya i statistike, Izd-vo LGU, L., 1976 | Zbl
[2] N. M. Bogolyubov, V. F. Brattsev, A. N. Vasilev, A. L. Korzhenevskii, R. A. Radzhabov, TMF, 26:3 (1976), 341–351 | DOI
[3] C. N. Yang, C. P. Yang, Phys. Rev., 151:1 (1966), 258–264 | DOI
[4] M. Goden, Volnovaya funktsiya Bete, Mir, M., 1987 | MR
[5] L. D. Faddeev, Kvantovye vpolne integriruemye modeli teorii polya, Preprint LOMI P-2-79, LOMI, L., 1979 ; L. D. Faddeev, “Quantum completely integrable models in field theory”, 40 Years in Mathematical Physics, World Sci. Ser. 20th Century Math., 2, World Sci., River Edge, NJ, 1995, 187–235 | Zbl | DOI | MR
[6] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992 | MR | Zbl
[7] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Monogr. Math. Phys., XIII, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[8] V. E. Korepin, Commun. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl
[9] A. G. Izergin, V. E. Korepin, Commun. Math. Phys., 99:2 (1985), 271–302 | DOI | MR | Zbl
[10] N. Kitanine, J.-M. Maillet, V. Terras, Nucl. Phys. B, 554:3 (1999), 647–678, arXiv: math-ph/9807020 | DOI | MR | Zbl
[11] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, Nucl. Phys. B, 642:3 (2002), 433–455 | DOI | MR | Zbl
[12] I. G. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR | Zbl
[13] M. E. Fisher, J. Statist. Phys., 34:5–6 (1984), 667–729 | DOI | MR
[14] T. Nagao, P. J. Forrester, Nucl. Phys. B, 620:3 (2002), 551–565, arXiv: cond-mat/0107221 | DOI | MR | Zbl
[15] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, J. Phys. A, 33:48 (2000), 8835–8866, arXiv: cond-mat/0006367 | DOI | MR | Zbl
[16] M. Katori, H. Tanemura, T. Nagao, N. Komatsuda, Phys. Rev. E, 68:2 (2003), 021112, 16 pp., arXiv: cond-mat/0303573 | DOI | MR
[17] G. Schehr, S. N. Majumdar, A. Comtet, J. Randon-Furling, Phys. Rev. Lett., 101:15 (2008), 150601, 4 pp., arXiv: 0807.0522 | DOI | MR | Zbl
[18] D. M. Bressoud, Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture, MAA Spectrum Series, XV, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[19] N. M. Bogoliubov, J. Phys. A, 38:43 (2005), 9415–9430, arXiv: cond-mat/0503748 | DOI | MR | Zbl
[20] N. M. Bogolyubov, “$XX0$ tsepochka Geizenberga i sluchainye bluzhdaniya”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody.XII, Zap. nauchn. sem. POMI, 325, POMI, SPb., 2005, 13–27 | DOI | MR | Zbl
[21] N. M. Bogoliubov, C. Malyshev, “A path integration approach to the correlators of $XY$ Heisenberg magnet and random walks”, Proceeding of the IX International Conference “Path Integrals. New Trends and Perspectives” (Dresden, Germany, September 23–28, 2007), eds. W. Janke, A. Pelster, World Sci. Publ., Hackensack, NJ, 2008, 508–513, arXiv: 0810.4816 | DOI | MR | Zbl
[22] N. M. Bogolyubov, TMF, 155:1 (2008), 25–38 | DOI | MR | Zbl
[23] N. M. Bogolyubov, K. L. Malyshev, TMF, 159:2 (2009), 179–193, arXiv: 0903.3227 | DOI | MR
[24] N. M. Bogolyubov, K. Malyshev, Algebra i analiz, 22:3 (2010), 32–59 | MR
[25] E. Lieb, T. Schultz, D. Mattis, Ann. Phys., 16:3 (1961), 407–466 | DOI | MR | Zbl
[26] Th. Niemeijer, Physica, 36:3 (1967), 377–419 ; 39:3 (1968), 313–326 | DOI | DOI
[27] F. Colomo, A. G. Izergin, V. E. Korepin, V. Tognetti, TMF, 94:1 (1993), 19–51 | DOI | MR
[28] K. L. Malyshev, TMF, 136:2 (2003), 285–298 | DOI | MR | Zbl
[29] F. C. Alcaraz, R. Z. Bariev, “An exactly solvable constrained $XXZ$ chain”, Statistical Physics on the Eve of the 21st Century, Ser. Adv. Statist. Mech., 14, eds. M. T. Batchelor, L. T. Wille, World Sci., Singapore, 1999, 412–424, arXiv: cond-mat/9904042 | MR
[30] N. I. Abarenkova, A. G. Pronko, TMF, 131:2 (2002), 288–303 | DOI | MR | Zbl
[31] A. J. A. James, W. D. Goetze, F. H. L. Essler, Phys. Rev. B, 79:21 (2009), 214408, 20 pp., arXiv: 0902.2402 | DOI
[32] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl
[33] L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, UMN, 34:5(209) (1979), 13–63 | DOI | MR
[34] E. H. Lieb, F. Y. Wu, “Two dimensional ferroelectric models”, Phase Transitions and Critical Phenomena, v. 1, eds. C. Domb, M. Green, Academic Press, London, 1972, 331–490 | MR
[35] V. O. Tarasov, L. A. Takhtadzhyan, L. D. Faddeev, TMF, 57:2 (1983), 163–181 | DOI | MR
[36] M. L. Mehta, Random Matrices, Academic Press, Boston, MA, 1991 | MR | Zbl
[37] N. Bogoliubov, J. Timonen, Phil. Trans. R. Soc. A, 369 (2011), 1319–1333 | DOI | MR | Zbl