Ising limit of a~Heisenberg $XXZ$ magnet and some temperature correlation functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 179-193
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Heisenberg spin-$1/2$ $XXZ$ magnet in the case where the anisotropy parameter tends to infinity (the so-called Ising limit). We find the temperature correlation function of a ferromagnetic string above the ground state. Our approach to calculating correlation functions is based on expressing the wave function in the considered limit in terms of Schur symmetric functions. We show that the asymptotic amplitude of the above correlation function at low temperatures is proportional to the squared number of strict plane partitions in a box.
Keywords:
Heisenberg magnet, Ising limit, correlation function.
@article{TMF_2011_169_2_a0,
author = {N. M. Bogolyubov and K. L. Malyshev},
title = {Ising limit of {a~Heisenberg} $XXZ$ magnet and some temperature correlation functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {179--193},
publisher = {mathdoc},
volume = {169},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a0/}
}
TY - JOUR AU - N. M. Bogolyubov AU - K. L. Malyshev TI - Ising limit of a~Heisenberg $XXZ$ magnet and some temperature correlation functions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2011 SP - 179 EP - 193 VL - 169 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a0/ LA - ru ID - TMF_2011_169_2_a0 ER -
%0 Journal Article %A N. M. Bogolyubov %A K. L. Malyshev %T Ising limit of a~Heisenberg $XXZ$ magnet and some temperature correlation functions %J Teoretičeskaâ i matematičeskaâ fizika %D 2011 %P 179-193 %V 169 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a0/ %G ru %F TMF_2011_169_2_a0
N. M. Bogolyubov; K. L. Malyshev. Ising limit of a~Heisenberg $XXZ$ magnet and some temperature correlation functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 169 (2011) no. 2, pp. 179-193. http://geodesic.mathdoc.fr/item/TMF_2011_169_2_a0/